Меню

Запишите закон преломления света



. для школьных учителей .
Как теперь смотреь флэш-файлы!





Закон преломления света

«Физика — 11 класс»

Напомним, в чем состоит явление преломления света.
Выведем затем закон преломления с помощью принципа Гюйгенса.

Наблюдение преломления света

На границе двух сред свет меняет направление своего распространения.
Часть световой энергии возвращается в первую среду, т. е. происходит отражение света.
Если вторая среда прозрачна, то свет частично может пройти через границу сред, также меняя при этом, как правило, направление распространения.

Это явление называется преломлением света.

Вследствие преломления наблюдается кажущееся изменение формы предметов, их расположения и размеров.
В этом нас могут убедить простые наблюдения.
Положим на дно пустого непрозрачного стакана монету или другой небольшой предмет.
Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой.
Не меняя положения головы, будем наливать в стакан воду.
По мере повышения уровня воды дно стакана с монетой как бы приподнимается.
Монета, которая ранее была видна лишь частично, теперь будет видна полностью.
Установим наклонно карандаш в сосуде с водой.
Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону.

Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света.

Закон преломления света определяет взаимное расположение падающего луча АВ, преломленного луча DB и перпендикуляра СЕ к поверхности раздела сред, восставленного в точке падения.
Угол α называется углом падения, а угол β — углом преломления.

Падающий, отраженный и преломленный лучи нетрудно наблюдать, сделав узкий световой пучок видимым.
Ход такого пучка в воздухе можно проследить, если пустить в воздух немного дыма или же поставить экран под небольшим углом к лучу.

Преломленный пучок виден также в подкрашенной флюоресцином воде аквариума.

Вывод закона преломления света

Закон преломления света был установлен опытным путем в XVII в.
Мы его выведем с помощью принципа Гюйгенса.

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде.
Обозначим скорость волны в первой среде через υ1, а во второй через υ2.

Пусть на плоскую границу раздела двух сред (например, из воздуха в воду) падает плоская световая волна.
Обозначим через АС фронт волны в тот момент, когда волна достигнет точки А.
Луч В1В достигнет границы раздела двух сред спустя время Δt:

Когда волна достигнет точки В, вторичная волна во второй среде от источника, находящегося в точке А, уже будет иметь вид полусферы радиусом

AD = υ2Δt

Фронт преломленной волны можно получить, проведя поверхность, касательную ко всем фронтам вторичных волн во второй среде, источники которых находятся на границе раздела сред.
В данном случае это плоскость BD.
Она является огибающей вторичных волн.

Угол падения α луча А1А равен углу САВ в треугольнике АВС (углы между двумя взаимно перпендикулярными сторонами).
Следовательно,

СВ = υ1Δt = АВ sin α

Угол преломления β равен углу ABD треугольника ABD.
Поэтому

AD = υ2Δt = АВ sin β

Разделив почленно одно уравнение на другое, получим

где
n — постоянная величина, не зависящая от угла падения.

Читайте также:  Названия ламп головного света

Сформулируем законы преломления света.

1) Падающий луч, преломленный луч и нормаль к границе раздела двух сред в точке падения лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления есть величина постоянная для этих двух сред, равная относительному показателю преломления второй среды относительно первой.

Убедиться в справедливости закона преломления можно экспериментально, измеряя углы падения и преломления и вычисляя отношение их синусов при различных углах падения.
Это отношение остается неизменным.

Показатель преломления

Из принципа Гюйгенса не только следует закон преломления, но с помощью этого принципа раскрывается физический смысл показателя преломления.
Он равен отношению скоростей света в средах, на границе между которыми происходит преломление:

Если угол преломления β меньше угла падения α, то согласно уравнению скорость света во второй среде меньше, чем в первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды.
Он показывает, во сколько раз скорость света в вакууме больше, чем в среде, и равен отношению синуса угла падения к синусу угла преломления при переходе светового луча из вакуума в данную среду:

Пользуясь формулой, можно выразить относительный показатель преломления через абсолютные показатели преломления n1 и n2 первой и второй сред.

Действительно, так как и где с — скорость света в вакууме, то

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физических свойств и состояния среды, т. е. от температуры вещества, его плотности, наличия в нем упругих напряжений.
Показатель преломления зависит также и от длины волны λ света.
Для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.
Поэтому в таблицах значений показателей преломления для разных веществ обычно указывается, для какого света приведено данное значение n и в каком состоянии находится среда.
Если таких указаний нет, то это означает, что зависимостью от приведенных факторов можно пренебречь.

В большинстве случаев приходится рассматривать переход света через границу воздух — твердое тело или воздух — жидкость, а не через границу вакуум — среда.
Однако абсолютный показатель преломления n2 твердого или жидкого вещества отличается от показателя преломления того же вещества относительно воздуха незначительно.
Так, абсолютный показатель преломления воздуха при нормальных условиях для желтого света равен примерно n1 ≈ 1,000292.
Следовательно,

Значения показателей преломления для некоторых веществ относительно воздуха приведены ниже в таблице (данные относятся к желтому свету).

Ход лучей в треугольной призме

С помощью закона преломления света можно рассчитать ход лучей в различных оптических устройствах, например в треугольной призме, изготовленной из стекла или другого прозрачного материала.

На рисунке изображено сечение стеклянной призмы плоскостью, перпендикулярной ее боковым ребрам.
Луч в призме отклоняется к основанию, преломляясь на гранях ОА и ОВ.
Угол φ между этими гранями называют преломляющим углом призмы.
Угол θ отклонения луча зависит от преломляющего угла φ призмы, показателя преломления n материала призмы и угла падения α.
Он может быть вычислен с помощью закона преломления.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Читайте также:  Что будет если выключить свет во всем мире

Световые волны. Физика, учебник для 11 класса — Класс!ная физика

Источник

Запишите закон преломления света

Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

  • отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;
  • угол падения α равен углу отражения γ:

α = γ

Вывод на основе принципа Гюйгенса:

Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред. Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.

Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол падения α равен углу отражения γ.

  • луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;
  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна v.

Пусть время, затрачиваемое волной для прохождения пути ВС, равно Δt. Тогда ВС = сΔt. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u, достигнет точек полусферы, радиус которой AD = t. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III. Из рис. видно, что

, т.е. .

Отсюда следует закон Снелиуса:

П ринцип Ферма : свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела

В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:

.

Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

,

отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .

Следствия из принципа Ферма:

1. Обратимость световых лучей: если обратить луч III, заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

2. Если свет распространяется из среды с большим показателем преломления n1 (оптически более плотной) в среду с меньшим показателем преломления n2 (оптически менее плотной) ( n1 > n2 ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α:

Читайте также:  Что значит электрический свет

3. С увеличением угла падения увеличивается угол преломления, до тех пор, пока при некотором угле падения (α = αпр) угол преломления не окажется равным π/2.

Полное отражение

Угол αпр называется предельным углом полного отражения . При углах падения α > αпр весь падающий свет полностью отражается.

По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

Если α = αпр , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего.

Таким образом, при углах падения в пределах от αпр до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением .

В случае, если вторая среда — воздух

Преломление света в плоскопараллельной пластине

Плоскопараллельная пластина — это оптический прибор, представляющий собой ограниченный параллельными поверхностями слой однородной среды, прозрачной в некотором интервале длин волн λ оптического излучения.

Основным оптическим свойством пластины является то, что луч, падающий на пластину, в результате двукратного преломления на поверхностях пластины параллельно смещается на некоторую величину δL относительно исходного луча

Величина смещения в плоскопараллельной пластине

Величина сдвига луча света δL зависит:

  • от угла падения света α ,
  • от толщины пластины d ,
  • от показателя преломления вещества, из которого изготовлена плоскопараллельная пластина n .

C увеличением любого из этих параметров смещение луча света увеличивается.

Смещение луча можно выразить через угол падения

Из этого выражения видно, что величина смещения луча в пластине зависит от угла падения, толщины пластины и показателя преломления. Из формулы видно, что отклонения луча не происходит, если:

  1. угол падения равен нулю: α = 0 ,
  2. относительный показатель преломления равен единице (преломления не происходит): n = 1 ,
  3. толщина пластины равна нулю: d = 0

Ход луча через треугольную призму

Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. Важнейшей характеристикой призмы является показатель преломления материала, из которого она изготовлена.

На призму из точки S падает луч света. Испытав 2 преломления, он выходит с отклонением на угол δ, который называется угол отклонения луча. Угол при вершине призмы АВС – φ называется преломляющим углом.

Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

Если призма сделана из материала, показатель преломления которого больше, чем у среды, в которой находится призма, отклонение лучей происходит к основанию призмы.

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее — красные.

Источник