Меню

Закон прямолинейного распространения света при образовании тени



Закон прямолинейного распространения света. Закон отражения света. Плоское зеркало. Преломление света

1. В основе явления распространения света лежат три закона: закон прямолинейного распространения света, закон отражения света и закон преломления света.

Закон прямолинейного распространения света: в однородной среде свет распространяется прямолинейно. Однородная среда — это среда, состоящая из одного и того же вещества, например, воздух, вода, стекло, масло и пр. Наблюдать прямолинейное распространение света можно в затемненной комнате, в которую через небольшое отверстие проникает луч света.

Следствием прямолинейного распространения света является то, что свет не проникает за экраны, ширмы и другие преграды. Однако если преграда очень мала, например, если это волос, тонкая нить и т.п., то за неё свет будет проникать, т.е. свет в определённых условиях
свет отклоняется от прямолинейного распространения.

Прямолинейное распространение света объясняет образование тени от предметов. На рисунке 97 показано распространение света от точечного источника.

Точечный источник — это такой источник, размеры которого малы по сравнению с расстоянием от него до наблюдателя. На рисунке видно, что на экране образуется чёткая
тень предмета.

На рисунке 98 показано распространение света от протяжённого источника.

В этом случае на экране образуются область тени и область полутени. Тень — область, в которую свет не попадает, в область полутени свет попадает от одной части источника света.

Зная, как образуется тень, можно объяснить солнечные и лунные затмения.

2. Если среда, в которой распространяется свет неоднородная, т.е. свет падает на границу раздела двух сред, то свет изменяет направление распространения. На границе раздела двух сред происходят три явления: отражение света от границы раздела сред, преломление и поглощение веществом (рис. 99).

На рисунке 99 АО — падающий луч, ОВ — отражённый луч, ОС — преломлённый луч; угол (​ \( \alpha \) ​ между падающим лучом и перпендикуляром к границе раздела сред — угол падения луча, угол ​ \( \beta \) ​ между отражённым лучом и перпендикуляром к границе раздела сред — угол отражения, угол ​ \( \gamma \) ​ между преломлённым лучом и перпендикуляром к границе раздела сред — угол преломления.

При изменении угла падения изменяется угол отражения, но при этом отражение света подчиняется закону отражения:

  • угол отражения света равен углу падения ​ \( (\beta=\alpha) \) ​,
  • лучи падающий и отражённый, а также перпендикуляр, восставленный к границе раздела двух сред, лежат в одной плоскости.

Из закона отражения света следует, что падающий и отражённый лучи обратимы.

Если свет отражается от гладкой поверхности, то отражение называется зеркальным. В этом случае, если на поверхность падают параллельные лучи, то отражённые лучи тоже будут параллельными (рис. 100).

Если параллельные лучи падают на шероховатую поверхность, то отражённые лучи будут направлены в разные стороны. Это отражение называют рассеянным или диффузным.

3. На рисунке 101 приведено построение изображения в плоском зеркале. Как показывают опыт и построение изображения предмета в плоском зеркале на основе закона отражения:

  • плоское зеркало дает прямое изображение предмета;
  • изображение имеет те же размеры, что и предмет;
  • расстояние от предмета до зеркала равно расстоянию от зеркала до изображения.

Иными словами предмет и его изображение симметричны относительно зеркала.

Изображение предмета в плоском зеркале является мнимым. Мнимое изображение — это такое изображение, которое формируется глазом. В точке ​ \( S’ \) ​ собираются не сами лучи, а их продолжение, энергия в эту точку не поступает.

4. Изменение направления распространения света при переходе в другую среду называют преломлением света.

Эксперименты свидетельствуют о том, что при увеличении угла падения увеличивается угол преломления. Из опытов также следует, что соотношение углов падения и преломления зависит от оптической плотности среды.

Оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света, тем меньше оптическая плотность среды. Так, оптическая плотность воздуха меньше, чем стекла, масла и пр., поскольку скорость света в этих средах меньше, чем в воздухе.

Явление преломления света подчиняется следующим закономерностям:

  • если свет переходит из среды оптически менее плотной в среду оптически более плотную, то угол преломления меньше угла падения ​ \( (\gamma ​;
  • если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения \( (\gamma>\alpha) \) ;
  • лучи падающий и преломлённый, а также перпендикуляр, восставленный к границе раздела двух сред, лежат в одной плоскости.
Читайте также:  Выпишите названия частей глаза через которые проходят лучи света прежде чем

При переходе света из одной среды в другую его интенсивность несколько уменьшается. Это связано с тем, что свет частично поглощается средой.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке изображены точечный источник света ​ \( L \) ​, предмет ​ \( K \) ​ и экран, на котором получают тень от предмета. При мере удаления предмета от источника света и приближения его к экрану (см. рисунок)

1) размеры тени будут уменьшаться
2) размеры тени будут увеличиваться
3) границы тени будут размываться
4) границы тени будут становиться более чёткими

2. Размеры изображения предмета в плоском зеркале

1) больше размеров предмета
2) равны размерам предмета
3) меньше размеров предмета
4) больше, равны или меньше размеров предмета в зависимости от расстояния между предметом и зеркалом

3. Луч света падает на плоское зеркало. Угол между падающим лучом и отражённым увеличили на 30°. Угол между зеркалом и отражённым лучом

1) увеличился на 30°
2) увеличился на 15°
3) уменьшился на 30°
4) уменьшился на 15°

4. Какое из изображений — А, Б, В или Г — соответствует предмету MN, находящемуся перед зеркалом?

5. Предмет, расположенный перед плоским зеркалом, приблизили к нему на 5 см. Как изменилось расстояние между предметом и его изображением?

1) увеличилось на 5 см
2) уменьшилось на 5 см
3) увеличилось на 10 см
4) уменьшилось на 10 см

6. Предмет, расположенный перед плоским зеркалом, удалили от него так, что расстояние между предметом и его изображением увеличилось в 2 раза. Во сколько раз увеличилось расстояние между предметом и зеркалом?

1) в 0,5 раза
2) в 2 раза
3) в 4 раза
4) в 8 раз

7. Чему равен угол падения луча на границе вода — воздух, если известно, что угол преломления равен углу падения?

8. Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред. Какое из направлений 1-4 соответствует преломлённому лучу?

9. Свет распространяется из масла в воздух, преломляясь на границе раздела этих сред. Па каком рисунке правильно представлены падающий и преломлённый лучи?

10. Световой луч падает на границу раздела двух сред. Скорость света во второй среде

1) равна скорости света в первой среде
2) больше скорости света в первой среде
3) меньше скорости света в первой среде
4) используя один луч, нельзя дать точный

11. Для каждого примера из первого столбца подберите соответствующее физическое явление из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ПРИРОДНЫЕ ЯВЛЕНИЯ
A) изображение стоящих на берегу деревьев в «зеркале» воды
Б) видимое изменение положения камня на дне озера
B) эхо в горах

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ
1) отражение света
2) преломление света
3) дисперсия света
4) отражение звуковых волн
5) преломление звуковых волн

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу

1) угол преломления равен углу падения, если оптическая плотность двух граничащих сред одинакова
2) чем больше показатель преломления среды, тем больше скорость света в ней
3) полное внутреннее отражение происходит при переходе света из среды оптически более плотной в среду оптически менее плотную
4) угол преломления всегда меньше угла падения
5) угол преломления всегда равен углу падения

Источник

Закон прямолинейного распространения света при образовании тени

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.

Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона, установленных опытным путем:

· закон прямолинейного распространения света;

· закон независимости световых лучей;

· закон преломления света.

Читайте также:  Ссср одна шестая часть света

Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса.

Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Гюйгенс Христиан (1629–1695), нидерландский ученый. В 1665–1681 гг. работал в Париже. Изобрел (1657) маятниковые часы со спусковым механизмом, дал их теорию, установил законы колебаний физического маятника. Опубликовал в 1690 г. созданную им в 1678 г. волновую теорию света, объяснил двойное лучепреломление. Усовершенствовал телескоп; сконструировал окуляр, названный его именем. Открыл кольцо у Сатурна и его спутник Титан. Автор одного из первых трудов по теории вероятностей (1657 г.).

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления.

Закон прямолинейного распространения света:

· свет в оптически однородной среде распространяется прямолинейно.

Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.

Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.

Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны, когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков:

· эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены.

Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.

· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;

· угол падения α равен углу отражения γ: α = γ

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.

· Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол падения α равен углу отражения γ.

Закон преломления (закон Снелиуса) (рис. 7.5):

· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;

· отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).

Пусть время, затрачиваемое волной для прохождения пути ВС, равно Dt. Тогда ВС = сDt. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u, достигнет точек полусферы, радиус которой AD = uDt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III. Из рис. 7.6 видно, что

, т.е. .

Отсюда следует закон Снелиуса:

.

Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Ферма Пьер (1601–1665) – французский математик и физик. Родился в Бомон-де-Ломань. Получил юридическое образование. С 1631 г. был советником парламента в Тулузе.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.

Читайте также:  Светодиодные балки комбинированного света однорядные

Согласно принципу Ферма, свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB:

.

Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

,

отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .

Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).

Из принципа Ферма вытекает несколько следствий.

Обратимость световых лучей: если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

Другой пример – мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.

Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной) ( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а).

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б, в), до тех пор, пока при некотором угле падения ( ) угол преломления не окажется равным π/2.

Угол называется предельным углом. При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г).

· По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г).

· Таким образом, при углах падения в пределах от до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Предельный угол определим из формулы:

;

.

Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.

При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.

На рис. 7.9 показаны призмы полного отражения, позволяющие:

а) повернуть луч на 90°;

б) повернуть изображение;

в) обернуть лучи.

Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах, представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.

В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного, претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.

Световоды используются при создании телеграфно-телефонных кабелей большой емкости. Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.

Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

Источник

Adblock
detector