Меню

Свет это важнейший экологический фактор



СВЕТ — как экологический фактор

Экологические факторы

Свет как экологический фактор имеет важнейшее значение потому, что является источником энергии для процессов фотосинтеза, т. е. участвует в образовании органических веществ из неорганических составляющих. Он играет большую и разнообразную роль в различных жизненных процессах у животных, что определяется его физическими свойствами.

Строго говоря, в экологии под термином «свет» подразумевается весь диапазон солнечного излучения, представляющий собой поток энергии в пределах длин волн от 0,05 до 3000 нм и более. Этот поток радиации распадается на несколько областей, отличающихся физическими свойствами и экологическим значением для живых организмов. Границы этих областей не четки; в общем виде их можно представ следующим образом:

150—400 нм — ультрафиолетовая радиация (УФ);

400—800 нм — видимый свет (границы отличаются для раз организмов);

800—1000 нм — инфракрасная радиация (ИК).

За пределами зоны ПК-радиации располагается область так называемой дальней инфракрасной радиации — мощного фактора теплового режима среды.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАЗЛИЧНЫХ УЧАСТКОВ СПЕКТРА СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

Не вся солнечная радиация достигает поверхности Земли. За пределами атмосферы перпендикулярная к солнечным лучам поверхность получает энергию порядка 2,00 кал/см2 • мин (1,39 • 103 Дж/м2). Эта величина называется солнечной постоянной; она слегка варьирует по сезонам года в соответствии с изменением удаления Земли Солнца.

При прохождении через атмосферу часть солнечной радиации рассеивается молекулами газов воздуха и водяными парами, часть отражается от облаков. Этот процесс связан и с изменением качественного состава радиации. В частности, наиболее коротковолновая часть спектра (с длиной волны примерно до 300 нм) отражается озоновым экраном.

Ионизирующее излучение. Это излучение включает космические лучи, а также естественную и искусственную радиоактивность. На поверхности Земли эта форма воздействия на организмы связана главным образом с естественным радиоактивным фоном, а в наше время — и с его резкими возрастаниями техногенного происхождения.

Биологическое действие радиации осуществляется, в основном, на субклеточном уровне (ядра, митохондрии, микросомы). Установлена зависимость этого действия от дозы облучения: при малых дозировках повреждающий эффект может сменяться стимулирующим. Известно влияние ионизирующей радиации на генетический аппарат (мутагенный эффект). Экологический аспект действия этой части спектра остается практически не изученным.

Ультрафиолетовые лучи. Наиболее коротковолновая (200—280 нм) зона этой части спектра («ультрафиолет С») активно абсорбируется кожей; по опасности УФ-С близок к ЛГ-лучам, но практически полностью поглощается озоновым экраном. Следующая зона — УФ-В, с длиной волны 280—320 нм — наиболее опасная часть спектра УФ, обладающая канцерогенным действием. Механизм этого действия неизвестен; предполагают влияние через нарушение молекулы ДНК. Кроме того, эти лучи инактивируют в коже клетки Лангерганса, отвечающие за ее иммунитет, а также активируют некоторые микроорганизмы. Последнее свойственно только этой части спектра УФ; в других длинах волн УФ губителен для микробов. Большая часть зоны УФ-Б также поглощается озоновым экраном; до поверхности Земли доходят лишь УФ-лучи с длиной волны примерно от 300 нм. Эта часть спектра обладает большой энергией и оказывает на живые организмы главным образом химическое действие. В частности, УФ-лучи стимулируют процессы клеточного синтеза. Показано, что облучение ультрафиолетом повышает продуктивность молодняка сельскохозяйственных животных.

Под действием этих лучей в организме синтезируется витамин D, регулирующий обмен Са и Р, а соответственно нормальный рост и развитие скелета. Особенно велико значение этого витамина для растущего молодняка. Поэтому многие млекопитающие, выводящие детенышей в норах, регулярно (чаще—по утрам) выносят их на освещенные солнцем места вблизи норы. Так поступают, например, лисицы и барсуки. «Солнечное купанье» свойственно и многим птицам; основная роль этой формы поведения — нормализация обмена, синтез витамина D и регуляция продукции меланина. У водоплавающих птиц витамин D синтезируется на основе жирного секрета копчиковых желез, которым они смазывают свое оперение; соскабливая длиной волны порядка 400—700 нм. Некоторые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части спектра (максимум в области 800—1000 нм).

Читайте также:  Suzuki sx4 замена лампы ближнего света

Зеленый лист поглощает в среднем 75 % падающей на него лучистой энергии. Но коэффициент использования ее на фотосинтез невысок: около 10 % при низкой освещенности и лишь 1—1 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Наиболее важные внешние факторы, влияющие на уровень фотосинтеза,— температура, свет, диоксид углерода и кислород. На уровне самого растения на этот процесс влияют содержание хлорофилла и воды, особенности анатомии листа, концентрация ферментов.

Зависимость фотосинтеза от температуры характеризуется кривой, на которой выделяются точки (зоны) минимума, оптимума и максимума. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к температурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (—1, —2°С), но у наиболее холодолюбивых форм опускается до—5. —ТС. Максимальная температура фотосинтеза в среднем на 10—12°С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растений. Оптимальной температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90 % своей максимальной величины; эта зона зависит от освещенности: повышается при ее увеличении и снижается в условиях затенения. Поэтому при низкой освещенности фотосинтез идет активнее при более низких температурах, а при высокой (более 3000 лк) интенсивность этого процесса увеличивается с повышением температуры.

Освещенность в своем влиянии на фотосинтез характеризуется так называемой кривой насыщения: вначале с повышением освещенности кривая потребления СО2 резко идет вверх, затем — по достижении определенного порога освещенности — нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. В этой зависимости хорошо прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещенности, чем у светолюбивых. В темноте кривые ассимиляции переходят за нулевой уровень: выделение СО2 при дыхании не компенсируется его потреблением для фотосинтеза. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выделению его при дыхании, называют точкой компенсации; у светолюбивых растений она располагается выше, чем у тенелюбивых. Кроме того, положение этой точки зависит от концентрации СО2 и от температуры.

Диоксид углерода в процессе фотосинтеза выступает как ресурс для синтеза углеводов. Норма содержания СО2 в атмосфере составляет 0,57 мг/л. Повышение концентрации ведет к усилению фотосинтеза, но лишь до известных пределов; при концентрации 5—10 % (против нормальной — 0,03 %) фотосинтез ингибируется. В сочетании с реакцией на другие факторы колебания концентрации СО2 определяют поддержание нормального уровня фотосинтеза в разнообразных природных условиях. Такие колебания обусловлены суточным ритмом фотосинтеза, закономерными изменениями интенсивности почвенного дыхания и некоторыми другими факторами. Например, суточные колебания СО2 в густых растительных сообществах могут достигать 25 % от средних величин.

Вода, тоже участвующая в процессе фотосинтеза, редко его лимитирует. Непрямым путем, однако, недостаток воды (в частности, сезонный) может быть ограничителем. Например, в западной Австралии некоторые виды растений во время засухи снижают фотосинтез на 2/3 по сравнению с весенним периодом (В. Collier et al., 1974)

Источник

Свет как экологический фактор, его влияние на распространение и жизнедеятельность организмов

Основным источником света в Биосфере Солнце. важны следующие количественные характеристики света: – длина волны; – интенсивность светового потока (количество энергии излучения, поступающей в единицу времени на единицу площади); — фотопериод (соотношение между светлой и темной фазой суток). Человеческий глаз воспринимает электромагнитные волны(видимый свет) от3900 Å (синий свет) до7600 Å (красный). Излучение с более низкой длиной волны УФ-, рентгеновское и гамма-излучение, и более высокой– инфракрасное(тепловое) излучение, радиоволны и т.п., не воспринимает. некоторые насекомые способны УФ цвет, а многие ночные животные– ИК излучение, исходящее от объектов, температура которых выше температуры окружающей среды. Зеленые растения для фотосинтеза используют волны в диапазоне «фотосинтетически активной радиации» (ФАР) от 3800 до7100 Å. У прокариотов имеются фотосинтетические пигменты, которые используют энергию излучения вне диапазона ФАР, а именно волны длиной8000, 8500 и 8700 — 8900 Å. Максимальная эффективность использования ФАР для фотосинтеза составляет не более3 – 4,5%. Наблюдалась она в культуре морских водорослей при сумеречном освещении. В тропических лесах это значение составляет1 – 3%, в лесах умеренного пояса– 0,6 – 1,2%, в посевах сельскохозяйственных культур– не более0,6%. Интенсивность света имеет важной значение для величины интенсивности фотосинтеза. У разных видов фотосинтезирующих организмов максимальная интенсивность фотосинтеза достигается при неодинаковой интенсивности светового потока. По этому признаку растения делятся на свето- и тенелюбивые. у всех видов растений очень яркий свет подавляет фотосинтез. Света полной Луны на безоблачном небе вполне достаточно для протекания фотосинтеза у некоторых наземных растений. В чистых водах Мирового океана свет проникает до глубины200 м. В чистых пресноводных озерах свет может проникать до глубины60-70 м(Байкал). До половины органического вещества, созданного растениями при фотосинтезе сразу же расходуется на их дыхание. Поэтому они могут существовать лишь в таких световых условиях, когда количество органического вещества, созданного при фотосинтезе будет превышать или хотя бы быть равным, его количеству, использованному на дыхание. Существуют целый ряд автотрофных жгутиконосцев, способных к биолюминесценции. Ночью ее скопления образуют достаточно света для своего процесса фотосинтеза. Гетеротрофные организмы, имеющие органы зрения, используют видимый свет для ориентации в пространстве. Отдельные ночные организмы способны воспринимать также ИК излучение, а насекомые– УФ излучение. большинству гетеротрофных организмов определенное количество света необходимо, например, для выработки витаминов и др в кожных покровах. Таким образом, электромагнитное излучение Солнца не вносит никакого вклада в естественный фон ионизирующей радиации на поверхности Земли. Годовой характер изменения соотношения между светлой(С) и темной (Т) фазой суток(фотопериод) подчинен строгим закономерностям, что обусловлено вращением Земли вокруг Солнца. На экваторе фотопериод в течение года строго постоянен и составляет 12С: 12Т. Длительность светового дня в каждые сутки в определенной точке Земного шара строго постоянно, в отличие от других важных экологических факторов. Поэтому для многих организмов, особенно птиц, фотопериод является сигнальным фактором многих важнейших этапов их жизненного цикла. Все организмы нуждаются в воде. Вода используется растениями для фотосинтеза. Вода является одной из основных сред обитания. Многие другие виды связаны с водой на определенных стадиях своего жизненного цикла. Многие организмы приспособились к существованию в условиях дефицита воды (Растения-суккуленты). Многие животные в случае недостатка воды используют метаболическую воду, получаемую путем окисления имеющихся в их организмах запасов жиров.

Читайте также:  Определить показатель преломления стекла если при отражении от него света отраженный луч

Читайте также:

Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы

Источник

СВЕТ, КАК ЭКОЛОГИЧЕСКИЙ ФАКТОР

Свет — это первичный источник энергии, без которого невозможна жизнь на Земле. Он участвует в фотосинтезе, обеспечивая создание растительностью Земли органических соединений из неорганических, и в этом его важнейшая энергетическая функция. Но в фотосинтезе участвует лишь часть спектра в пределах от 380 до 760 нм, которую называют областью физиологически активной радиации (ФАР). Внутри нее для фотосинтеза наибольшее значение имеют красно-оранжевые лучи (600-700 нм) и фиолетово-голубые (400-500 нм), наименьшее — желто-зеленые (500-600 нм). Последние отражаются, что и придает хлорофиллоносным растениям зеленую окраску. Однако свет не только энергетический ресурс, но и важнейший экологический фактор, весьма существенно влияющий на биоту в целом и на адаптационные процессы и явления в организмах.

За пределами видимого спектра и ФАР остаются инфракрасная (ИК) и ультрафиолетовая (УФ) области. УФ-излуче-ние несет много энергии и обладает фотохимическим воздействием — организмы к нему очень чувствительны. ЙК-излучение обладает значительно меньшей энергией, легко поглощается водой, но некоторые сухопутные организмы используют его для поднятия температуры тела выше окружающей.

Важное значение для организмов имеет интенсивность освещения. Растения по отношению к освещенности подразделяются на светолюбивые (гелиофиты), тенелюбивые (сциофиты) и теневыносливые.

Первые две группы обладают разными диапазонами толерантности в пределах экологического спектра освещенности. Яркий солнечный свет — оптимум гелиофитов (луговые травы, хлебные злаки, сорняки и др.), слабая освещенность — оптимум тенелюбивых (растения таежных ельников, лесостепных дубрав, тропических лесов). Первые не выносят тени, вторые — яркого солнечного света.

Теневыносливые растения имеют широкий диапазон толерантности к свету и могут развиваться как при яркой освещенности, так и в тени.

Читайте также:  Леонтьев не выключай свет

Свет имеет большое сигнальное значением вызывает регуляторные адаптации организмов. Одним из самых надежных сигналов, регулирующих активность организмов во времени, является длина дня — фотопериод. Фотопериодизм как явление — это реакция организма на сезонные изменения длины дня.

Длина дня в данном месте, в данное время года всегда одинакова, что позволяет растению и животному определиться на данной широте со временем года, т. е. временем начала цветения, созревания и т. п. Иными словами, фотопериод — это некое «реле времени», или «пусковой механизм», включающий последовательность физиологических процессов в живом организме.

Фотопериодизм нельзя отождествлять с обычными внешними суточными ритмами, обусловленными просто сменой дня и ночи. Однако суточная цикличность жизнедеятельности у животных и человека переходит во врожденные свойства вида, т. е. становится внутренними (эндогенными) ритмами.

Но в отличие от изначально внутренних ритмов их продолжительность может не совпадать с точной цифрой — 24 часа — на 15-20 минут, и в связи с этим, такие ритмы называют циркадными (в переводе — близкие к суткам).Эти ритмы помогают организму чувствовать время, и эту способность называют «биологическими часами». Они помогают птицам при перелетах ориентироваться по солнцу и вообще ориентируют организмы в более сложных ритмах природы.

Фотопериодизм, хотя и наследственно закреплен, проявляется лишь в сочетании с другими факторами, например температурой: если в день X холодно, то растение зацветает позже, или в случае с вызреванием — если холод наступает раньше дня X, то, скажем, картофель дает низкий урожай, и т. п. В субтропической и тропической зоне, где длина дня по сезонам года меняется мало, фотопериод не может служить важным экологическим фактором — на смену ему приходит чередование засушливых и дождливых сезонов, а в высокогорье главным сигнальным фактором становится температура.

Источник

Adblock
detector