Меню

Скорость фотона зависит от частоты света



Скорость фотона зависит от частоты света

Фотонная теория света. Масса, энергия и импульс фотона

В современной трактовке гипотеза квантов утверждает, что энергия E колебаний атома или молекулы может быть равна hν, 2hν, 3hν и т.д., но не существует колебаний с энергией в промежутке между двумя последовательными целыми, кратными . Это означает, что энергия не непрерывна, как полагали на протяжении столетий, а квантуется, т.е. существует лишь в строго определенных дискретных порциях. Наименьшая порция называется квантом энергии. Гипотезу квантов можно сформулировать и как утверждение о том, что на атомно-молекулярном уровне колебания происходят не с любыми амплитудами. Допустимые значения амплитуды связаны с частотой колебания ν.

В 1905 г. Эйнштейн выдвинул смелую идею, обобщавшую гипотезу квантов, и положил ее в основу новой теории света (квантовой теории фотоэффекта). Согласно теории Эйнштейна, свет с частотой νне только испускается, как это предполагал Планк, но и распространяется и поглощается веществом отдельными порциями (квантами), энергия которых . Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью распространения света в вакууме (с). Квант электромагнитного излучения получил название фотон.

Как мы уже говорили, испускание электронов с поверхности металла под действием падающего на него излучения соответствует представлению о свете как об электромагнитной волне, т.к. электрическое поле электромагнитной волны воздействует на электроны в металле и вырывает некоторые из них. Но Эйнштейн обратил внимание на то, что предсказываемые волновой теорией и фотонной (квантовой корпускулярной) теорией света детали фотоэффекта существенно расходятся.

Итак, мы можем измерить энергию вылетевшего электрона, исходя из волновой и фотонной теории. Чтобы ответить на вопрос, какая теория предпочтительней, рассмотрим некоторые детали фотоэффекта.

Начнем с волновой теории, и предположим, что пластина освещается монохроматическим светом. Световая волна характеризуется параметрами: интенсивностью и частотой (или длиной волны). Волновая теория предсказывает, что при изменении этих характеристик происходят следующие явления:

· при увеличении интенсивности света число выбитых электронов и их максимальная энергия должны возрастать, т.к. более высокая интенсивность света означает большую амплитуду электрического поля, а более сильное электрическое поле вырывает электроны с большей энергией;

выбитых электронов; кинетическая энергия зависит только от интенсивности падающего света.

Совершенно иное предсказывает фотонная (корпускулярная) теория. Прежде всего, заметим, что в монохроматическом пучке все фотоны имеют одинаковую энергию (равную hν). Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Согласно теории Эйнштейна, электрон выбивается с поверхности металла при соударении с ним отдельного фотона. При этом вся энергия фотона передается электрону, а фотон перестает существовать. Т.к. электроны удерживаются в металле силами притяжения, для выбивания электрона с поверхности металла требуется минимальная энергия A (которая называется работой выхода и составляет, для большинства металлов, величину порядка нескольких электронвольт). Если частота ν падающего света мала, то энергии и энергии фотона недостаточно для того, чтобы выбить электрон с поверхности металла. Если же , то электроны вылетают с поверхности металла, причем энергия в таком процессе сохраняется, т.е. энергия фотона (hν) равна кинетической энергии вылетевшего электрона плюс работе по выбиванию электрона из металла:

Уравнение (2.3.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

На основе этих соображений, фотонная (корпускулярная) теория света предсказывает следующее.

1. Увеличение интенсивности света означает увеличение числа налетающих фотонов, которые выбивают с поверхности металла больше электронов. Но так как энергия фотонов одна и та же, максимальная кинетическая энергия электрона не изменится (подтверждается I закон фотоэффекта).

2. При увеличении частоты падающего света максимальная кинетическая энергия электронов линейно возрастает в соответствии с формулой Эйнштейна (2.3.1). (Подтверждение II закона фотоэффекта). График этой зависимости представлен на рис. 2.3.

3. Если частота ν меньше критической частоты , то выбивание электронов с поверхности не происходит (III закон).

Итак, мы видим, что предсказания корпускулярной (фотонной) теории сильно отличаются от предсказаний волновой теории, но очень хорошо совпадают с тремя экспериментально установленными законами фотоэффекта.

Уравнение Эйнштейна было подтверждено опытами Милликена, выполненными в 1913–1914 гг. Основное отличие от опыта Столетова в том, что поверхность металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии от частоты и определялась постоянная Планка h.

В 1926 г. российские физики П.И. Лукирский и С.С. Прилежаев для исследования фотоэффекта применили метод вакуумного сферического конденсатора. Анодом служили посеребренные стенки стеклянного сферического баллона, а катодом – шарик (R ≈ 1,5 см) из исследуемого металла, помещенного в центр сферы. Такая форма электродов позволяла увеличить наклон ВАХ и тем самым более точно определить задерживающее напряжение (а следовательно, и h). Значение постоянной Планка h, полученное из этих опытов, согласуется со значениями, найденными другими методами (по излучению черного тела и по коротковолновой границе сплошного рентгеновского спектра). Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта.

Для объяснения теплового излучения Планк предположил, что свет испускается квантами. Эйнштейн при объяснении фотоэффекта предположил, что свет поглощается квантами. Также Эйнштейн предположил, что свет и распространяется квантами, т.е. порциями. Квант световой энергии получил название фотон. Т.е. опять пришли к понятию корпускула (частица).

Наиболее непосредственное подтверждение гипотезы Эйнштейна дал опыт Боте, в котором использовался метод совпадения (рис. 2.4).

Тонкая металлическая фольга Ф помещалась между двумя газоразрядными счетчиками Сч. Фольга освещалась слабым пучком рентгеновских лучей, под действием которых она сама становилась источником рентгеновских лучей (это явление называется рентгеновской флуоресценцией). Вследствие малой интенсивности первичного пучка, количество квантов, испускаемых фольгой, было невелико. При попадании квантов на счетчик механизм срабатывал и на движущейся бумажной ленте делалась отметка. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были срабатывать одновременно и отметки на ленте приходились бы одна против другой. В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было экспериментально доказано существование особых световых частиц – фотонов.

Фотон обладает энергией . Для видимого света длина волны λ = 0,5 мкм и энергия Е = 2,2 эВ, для рентгеновских лучей λ = мкм и Е = 0,5 эВ.

Фотон обладает инертной массой, которую можно найти из соотношения :

Фотон движется со скоростью света c = 3·10 8 м/с. Подставим это значение скорости в выражение для релятивистской массы:

Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света c.

Найдем связь энергии с импульсом фотона.

Мы знаем релятивистское выражение для импульса:

Из (2.3.3) найдем :

; ;

Подставив выражение (2.3.5) в выражение для энергии (2.3.4), получим связь между энергией и импульсом:

Но т. к. для покоящегося фотона , . Окончательно получим:

, или (2.3.7)

Т.к. , то можно записать:

Обозначим где kволновое число. Теперь выразим импульс через волновой вектор :

Источник

Читайте также:  Лампочка ближнего света amarok

Свет и его значения © 2022
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector