Меню

Система мониторинга уличного освещения



Интеллектуальные системы уличного освещения

О. Эннс, референт по работе с прессой, TEMA Technologie Marketing AG, Германия

На уличное освещение расходуется около 40 % от общего энергопотребления города. Использование интеллектуальных систем управления уличным освещением позволяет сократить энергетические и эксплуатационные расходы. Уменьшение энергопотребления в размере 30–50 % важно не только в экономическом плане – это реальный вклад в решение проблемы изменения климата и эффективного использования ресурсов.

Современный мегаполис потребляет огромное количество энергии. В городе средних размеров около 40 % общего расхода энергии приходится на освещение, которое помимо функционального освещения улиц и автострад включает в себя также декоративное освещение архитектурных памятников. Растущие цены на энергию и экологические факторы вынуждают города искать инновационные решения для использования более энергоэффективного уличного освещения. В странах Европейского Союза такие проекты поддерживаются растущим числом экологических стандартов, требующих сокращения применения продуктов, приводящих к выбросам тяжелых металлов. Так, например, чтобы сократить расходы энергии и уменьшить, таким образом, вредное влияние на экологию, в Европе было разработано новое законодательство, предписывающее применение электронных дросселей в системах уличного освещения.

Оптимальным решением проблемы, учитывающим и экологический, и экономический факторы, является применение интеллектуальных систем для управления уличным освещением: такие системы, как, например, системы управления на базе технологии LonWorks, позволяют одновременно измерять, анализировать и снижать потребление энергии. Сеть управления уличным освещением на базе таких технологий представляет собой открытую систему с возможностью расширения, обеспечивающую коммуникацию между составляющими ее приборами независимо от их производителя. Кроме того, благодаря таким технологиям возможны удаленные мониторинг и управление теперь уже «интеллектуальной» системой, что значительно снижает расходы на техническое обслуживание, а также сокращает время, требующееся для проведения ремонтных работ (можно рассчитать суммарную продолжительность горения светильников и локализовать, таким образом, возможность выхода светильника из строя), что не менее важно, т. к. безупречно действующее уличное освещение повышает безопасность жителей города.

Управление уличным освещением с помощью программы StreetLight. Vision.

Применение соответствующего программного обеспечения (ПО), например, Streetlight.Vision и эффективного сетевого обо-рудования, например, нового интеллектуального сервера i.LON SmartServer, еще больше расширяет возможности интеллектуальной системы управления освещением: специальное прог-раммное обеспечение позволяет собрать и обработать миллионы данных, поступающих с уличных светильников и других приборов, и предлагает конечному пользователю объемный сервисный пакет Интернет-программ для выполнения различных функций управления уличным освещением, включая анализ расхода энергии, автоматическое распоз-навание ошибок, предупреждающие меры по содержанию приборов в хорошем состоянии, а также дистанционные диагностику и контроль уличных светильников. ПО способно также переправлять собранные данные, например, в городской операторский центр или геоинформационную систему (ГИС). Серверы выступают в качестве контроллеров сегментов сети. Они собирают данные с уличных светильников и передают их в городской центр мониторинга, применяющий ПО сбора и регистрации данных. Сервер, например, i.LON SmartServer отличается быстрой инсталляцией, простым управлением сетью и высокой эксплуатационной надежностью даже в зонах с повышенным уровнем помех, что обеспечивается новой функцией усиления линии электропередачи (Power Line Repeating). Кроме того, такие cерверы снабжены астрономическими часами, позволяющими им определять степень естественного освещения солнечным или лунным светом и в соответствии с этим регулировать интенсивность света светильников. Это повышает срок службы устройств и снижает расходы, связанные с энергопотреблением.

Высокий уровень эффективности и функциональности таких систем управления с применением интеллектуального сервера обеспечивает снижение энергопотребления на 50 % и сокращение эксплуатационных издержек на 40 %. При этом неисправности распознаются и устраняются автоматически, что, в свою очередь, сокращает время простоя светильников на 75 %.

Применение технологии PLC в г. Осло (Норвегия)

Возвращаясь к вопросу об экономии энергии, можно добавить, что одна лишь возможность «притушить» свет на улицах с неинтенсивным движением в ночное время позволяет значительно понизить энергопотребление и связанные с ним затраты. Это дает возможность городу перераспределить сэкономленные средства на другие программы и мероприятия, направленные на улучшение условий жизни граждан и внешнего вида города.

Приведем несколько примеров использования систем интеллектуального управления уличным освещением.

Подобное интеллектуальное решение было применено в столице Норвегии – г. Осло. Для его реализации было заменено 55 тыс. уличных светильников: старые, неэффективные механические дроссели заменили электронными Lon-дросселями, применяющими технологию передачи данных по линям электросети (Power Line Communications – PLC). Технология PLC позволяет использовать уже имеющуюся в наличии электропроводку, снижая, таким образом, расходы на инсталляцию.

Управление всеми сегментами системы и регулирование уличных светильников осуществляется через интеллектуальные серверы. Для коммуникации этих серверов была установлена обширная беспроводная сеть, контрольная станция которой расположена в г. Осло. Сервисы протоколируют энергопотребление, определяют срок службы светильников и оповещают об этом систему. К их задачам относится также сбор поступающей от датчиков информации о плотнос-ти дорожного движения и о погодных условиях.

После оценки полученных серверами данных происходит автоматическое регулирование интенсивности освещения отдельных уличных светильников или всей системы освещения в целом. Такое регулирование освещения не только значительно снижает расход энергопотребления, но и продлевает срок службы светильников и сокращает издержки на их ремонт.

Благодаря контрольному прог- раммному обеспечению возможны удаленные контроль и регулирование светильников через контрольную станцию, а также анализ режима освещения и быстрое выявление выходов светильников из строя.

Благодаря новой технологии город сократил энергопотребление на 62 %, из которых две трети экономии энергии получено за счет изменений в инсталляции и одна треть – за счет сокращения времени использования ламп. Жители г. Осло постепенно привыкают к различным уровням освещения города. Ожидается, что варьирование уровня освещения позволит городу экономить еще дополнительно 10–15 % энергии.

г. Квебек (Канада)

Интеллектуальная система уличного освещения на базе такой технологии освещает также улицы исторического квартала г. Квебека (Канада). Особенностью данного проекта является возможность обеспечивать сокращение энергопотребления в часы пиковой нагрузки по запросу энергетических компаний. Так, выключая декоративное освещение, диммируя уличные светильники и отключая на какой-то период времени нерелевантное освещение, можно снизить уровень энергопотребления в целом по городу. Кроме того, сэкономленная таким образом энергия предоставляется в распоряжение энергетических компаний. Такой метод оправдывает себя особенно в зимнее время при низких температурах и коротком световом дне, когда энергопотребление достигает своего максимума.

Благодаря встроенным трансиверам (Power Line Transceiver) возможно управление системой через электросеть. Трансиверы сообщаются с Интернет-серверами, которые, в свою очередь, в качестве контроллеров сегментов сети сообщаются с ПО управления центрального компьютера в сервис-центре, где регистрируются все данные по энергопотреблению и состоянию каждого отдельного светильника, а также все выходы из строя и неисправности.

В отличие от прежних систем, новая система позволила г. Квебеку сэкономить 30 % энергии. Кроме того, интеллектуальная система освещения позволила наиболее выгодно выделить архитектурные особенности старинных зданий в историческом квартале города. Благодаря этому квартал, особенно в зимние месяцы, приобретает еще больше шарма и привлекательности как для туристов, так и для местных жителей.

Интернет-портал для управления светильниками на расстоянии

В июне 2007 года в г. Милтон Кейнес (Англия) было принято решение установить для дистанционного управления системами уличного освещения и их контроля систему на базе технологии LonWorks. В качестве первого пробного запуска система была установлена на 400 уличных светильниках. Каждый уличный светильник снабжен современным электрическим дросселем, в который интегрирован PLC-трансивер. Трансивер сообщается с Интернет-серверами, которые, в свою очередь, управляют отдельными секторами системы и связаны с центром контроля, собирающим данные о каждом отдельном светильнике относительно энергопотребления, состояния и сообщений об ошибках. С помощью Интернет-портала можно управлять светильниками на расстоянии, неисправности и потребление энергии отображаются автоматически.

Новая система уже сейчас позволила сократить энергопот-ребление на 40 %. Заметно повысился уровень общественной безопасности и понизились расходы на техобслуживание.

В Китае разработан проект несколько иного плана. Здесь планируется управляющие системы установить не в самом городе, а для освещения нескольких основных транспортных магистралей и мостов в дельте р. Янцзы. Это будет первое в мире применение открытой системы на базе IP для автомагистралей и мостов: для контроля сегментов системы более 1 500 контрольных точек оснащены интеллектуальными трансиверами. Интернет-сервер позволит через Интернет и сети IP расширить локальную сеть: удаленные контроль и управление возможны с обычного ПК без привлечения дополнительного персонала.

Перечисленные примеры далеко не единственные в мире. Многие города во Франции, Германии, Ирландии, Италии, Нидерландах, Норвегии, Испании уже используют подобные технологии в системах уличного освещения, способствуя, таким образом, сокращению энергопотребления своих городов. Экономия энергии в области городского уличного освещения за счет применения интеллектуальных энергоэффективных систем уже перестала быть мифом, позволяя городам «по-умному» сократить свои расходы.

Источник

Умное освещение

Автоматизированная система управления наружным освещением — АСУНО «Unilight» — программно-аппаратный комплекс, позволяющий контролировать состояние сетей наружного освещения, организовывать учет электроэнергии и осуществлять диагностику оборудования. Применение современной АСУНО позволяет сделать освещение города легко управляемым, экономичным и оперативным.

  • Гибкое управление режимами освещения
  • Пофазное управление линиями
  • Адресное управление каждым светильником
  • Индивидуальное или групповое диммирование
  • Автоматический контроль и диагностика состояния оборудования и светильников
  • Повышение уровня оперативно диспетчерского управления
  • Дистанционный учет энергопотребления
  • Сигнализация о неисправностях сети освещения
  • Сигнализация о несанкционированных подключениях к сети питания освещения
  • Формирование базы данных и отчётов об энергопотреблении

Применение
в энергосервисных контрактах

Увеличение срока
службы оборудования

Сокращение
эксплуатационных расходов

Сокращение
потребления электроэнергии

Источник

Автоматизированные системы управления уличным освещением

Преимущества автоматизированной системы управления освещением

Самым оптимальным решением для эффективного управления освещением является использование полностью автоматизированных систем управления и диспетчеризации наружного освещения (АСУНО).

Почему же автоматизированная система эффективнее классических методов управления? Сердцем АСУНО явля­ется программируемый логический контроллер, который производит управление коммутацией отходящих линий по заранее заданной программе. В программе контроллера хранится годовое расписание, поэтому освещение включается всегда в нужное время. Данные об энергопотреблении и авариях передаются в диспетчерский центр, поэтому всегда доступна информация о состоянии питания на вводе в подстанцию и значение потребляемой мощности. По снижению текущего энергопотребления относительно нормы можно оценить количество перегоревших ламп. При превышении нормы энергопотребления идентифицируется нелегальное подключение к электросети. Вся диагностическая информация доступна в диспетчерском центре, участие объездной бригады не требуется. Таким образом, снижается аварийность за счет превентивного мониторинга и экономятся средства на обслуживание.

Рис. 1. Шкаф управления системой городского освещения во Владивостоке

Системы автоматизированного управления освещением на базе решений от Phoenix Contact

Ядром системы управления является программируемый контроллер ILC 130 ETH. Контроллер имеет встроенные часы реального времени с возможностью синхронизации, что позволяет управлять контакторами линий освещения по заранее заданному расписанию. Разработанная программа управления освещением контролирует от одного до 26 контакторов. Причем переключение каждого контактора настраивается как по собственному отдельному расписанию, так и с возможностью объединения нескольких контакторов в групповое расписание. Расписание имеет возможность корректировки из диспетчерского центра. Каждый контактор может быть дистанционно включен, отключен или же временно переведен на альтернативное расписание.

Если вводить альтернативное расписание нецелесообразно, то произвести включение и выключение можно принудительной командой. Также заранее можно настроить возможность автоматического возврата на работу по расписанию, если при принудительном включении в течение заданного времени отсутствует связь с диспетчерским центром.

Связь с диспетчерским центром осуществляется по сети Ethernet. Для этого применяются любые доступные технологии, такие как оптоволоконные линии, сотовые сети 3G или ADSL. Для обеспечения защиты информации система управления может оснащаться межсетевым экраном с технологией VPN по протоколам IPSec или OpenVPN. Так как выделенные линии связи не всегда доступны, то наиболее часто связь осуществляется через Интернет, и шифрование данных с ограничением доступа необходимо для обеспечения безопасности объектов освещения. Связь по сети Ethernet имеет ряд преимуществ. Контроллеры доступны для программирования из сети, и для обслуживания или изменения программы под новое ТЗ нет необходимости выезжать на объект. Для синхронизации времени используется стандартный протокол NTP. Контроллер может подключаться к серверу точного времени в Интернете, к серверу времени диспетчерской или же к серверу времени своего локального маршрутизатора. Для наиболее эффективной синхронизации времени используются маршрутизаторы со встроенным приемником GPS/ГЛОНАСС TC MGUARD. Они получают координаты и точное время со спутников и передают эти данные на контроллер. Таким образом, кроме синхронизации времени, возможна точная привязка объекта к местности в модуле ГИС диспетчерского ПО в автоматическом режиме.

Рис. 2. Структура системы управления

Контроллер имеет возможность подключения собственного модуля измерения параметров электросети или счетчиков электроэнергии по интерфейсу RS485, таких как «Меркурий» или ПСЧ. Как уже говорилось, по измеренным значениям энергопотребления можно судить о количестве сгоревших ламп или нелегальном подключении к электросети. При первом запуске системы контроллер запоминает номинальные значения при полной нагрузке и при полном отключении различных каскадов. В процессе эксплуатации контроллеру можно выдать команду на перезапись данных параметров. На каждую линию освещения опционально устанавливается реле контроля, обеспечивающее диагностику неисправности на всем каскаде.

Рис. 3. Структура системы связи

Для обеспечения непрерывного функционирования системы в шкаф управления установлен блок бесперебойного питания, обеспечивающий автономную работу контроллера до 48 часов или более, в зависимости от батареи/аккумулятора. При наличии резервного ввода система управления может также выполнять функции АВР. При отсутствии напряжения на основном вводе система переключится на резервный.

Рис. 4. Архитектура системы диспетчеризации

Система мониторинга и управления

Система управления включает в себя специализированное программное обеспечение верхнего уровня, построенное на современных ИТ-решениях. Разработанный коммуникационный протокол позволяет контроллерам накапливать и передавать архивы событий и измеряемых величин, а также их текущие значения — как по запросу, так и спорадически. Для обеспечения эффективного управления большим количеством объектов в систему введена функция синхронизации. Ряд команд или изменений настроек, не требующих немедленного исполнения, заносятся в определенный регистр базы данных. Контроллер с определенной периодичностью запрашивает для себя новые параметры и получает их при следующей сессии синхронизации. Таким образом, если отсутствует связь с отдельными исполнительными пунктами (например, если система обесточена или перегружена сотовая связь), нет необходимости повторно передавать параметры на каждую станцию и отслеживать их применение. Новые данные, например, расписание, будут автоматически загружены в контроллер при очередном сеансе связи с диспетчерским пунктом.

Также контроллеры системы управления могут быть включены в любые системы диспетчеризации посредством стандартных протоколов, таких как Modbus, TCP, IEC 610870-5-104, OPC или XML.

Данная технология существенно облегчает ввод шкафов управления в эксплуатацию. Контроллер автоматически определяет свою конфигурацию и передает ее на центральный сервер. Администратору системы требуется лишь указать режим работы для новой станции. Система диспетчеризации выполнена на клиент-серверной архитектуре с использованием веб-технологий. Сервер ввода/вывода обеспечивает обмен данными с контроллером и запись параметров в базу данных. Сервер приложения и веб-сервер обеспечивают визуализацию работы системы. Использование веб-технологий позволяет производить мониторинг системы с любого компьютера, смартфона, или планшета. Например, если ответственный за эксплуатацию получает SMS-сообщение о неисправности, то, подключившись через VPN-соединение к центральному серверу из любой точки мира и открыв веб-страницу системы, он сможет точно определить неисправность, выдать соответствующие распоряжения и проконтролировать выполнение работ по возврату системы в нормальный режим.

Рис. 5. Экраны системы диспетчеризации

Используя современные технологии от Phoenix Contact, можно добиться максимальной гибкости и функциональности при построении системы управления наружным освещениям, снижая затраты на электроэнергию и расходы на обслуживание. Возможности модернизации функционала системы практически не ограничены, что позволяет сделать ее еще более гибкой и эффективной.

Источник

Читайте также:  Декоративное освещение полок состав

Свет и его значения © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.