Меню

Сечение кабеля по потере напряжения для освещения



Расчет линий электропередачи для освещения, формулы

Каждый светотехнический проект предполагает массу базовых расчётов. Первый, и самый главный из них – осветительный. Ведь согласитесь, без света не смогут работать ни сами проектанты, ни строители с электромонтёрами.

При планировании линий освещения нужно отталкиваться от прогнозированного потребления (от создаваемой осветительными приборами нагрузкой). Отталкиваясь от этих параметров, производится выбор сечения силовых кабелей и проводов, номинального тока защитно-коммутационного аппарата и т.п.

Поскольку по пути к потребителю материал проводников создаёт сопротивление электротоку — из-за этого происходят потери напряжения. Особенно это заметно когда к одной линии(того же освещения, например) подключено много потребителей, со множеством распределительных и групповых сетей.

В итоге получается, что напряжение на входе и на выходе каждого отдельного участка заметно отличается, и наиболее удалённые по линии потребители получают намного более заниженные параметры напряжения, чем заявлено. И при этом распределение происходит не равномерно, что отрицательно сказывается на работе всех задействованных электроприборов.

Всё потому, что проводники, продолжительное время работающие под нагрузкой, гораздо превышающей расчётную, начинают функционировать в режиме постоянных перегрузок. Вследствие чего возникает перегрев, а это может спровоцировать замыкание или пожар на линии. И всё из-за недочётов проектантов, которые не удосужились подобрать под номинальные токи автоматического выключателя соответствующее сечение проводников.

Поэтому при разработке проекта всегда нужно помнить, что номинальный ток никогда не должен превышать предельно допустимых значений токов проводников. Иначе защитная функция автоматического выключателя, оберегающего проводники от перегрузок, будет просто неактивной.

В отечественных сетях процент потерь очень высокий – иногда он достигает до 10-22 % (в то время, когда в мировой практике эти цифры гораздо ниже, и составляют 4-6%). И в результате перерасход, создаваемый при потере, бременем ложится на плечи конечных потребителей.

Вы спросите, а зачем нужны все эти расчёты, особенно для объектов с невысокими уровнями потребления? Укажем основные причины, почему необходимо делать предварительный расчет мощности (напряжения) для будущей линии освещения:
Во-первых – на основании полученной суммарной мощности потребления определяются оптимальные токи с допустимой нагрузкой на все освещения элементы в цепи.
Во-вторых –исходя из степени нагрева проводников под воздействием рассчитанных, предельно допустимых токов, выбирается оптимальное сечение силовых кабелей и проводов для освещения.

В-третьих – отталкиваясь от полученного значения сечения силовых кабелей (проводов) и от выдерживаемой ими длительной максимальной нагрузки выполняется подбор подходящей защитной аппаратуры автоматического отключения.
В-четвёртых — любые расчёты просто необходимы для получения разрешений и техусловий от местных электрораспределительных организаций. На их основании техкомиссией будет приниматься решение о подключении объекта к линии, соответствующей по мощности и с допустимой нагрузкой.

Несмотря на кажущуюся незначительность (либо недостаточную точность) подобных усреднённых расчётов, они — это необходимое условие дальнейшей безопасной эксплуатации линии, т.к. изначально будут подобраны оптимальные элементы. В результате такие линии будут максимально равномерно распределять токи между всеми потребителями. Попутно будут уменьшаться потери напряжения от нерационально распределенной нагрузки.

Стоит отметить, что в линиях с равномерно распределенной нагрузкой (тех же уличных светильниках, например) потери будут гораздо меньшими, чем в линиях, распределённых не равномерно. В данном случае, вкупе с дополнительной индуктивной нагрузкой, потери могут оказаться вдвое большими. Поэтому приведённый расчет может дать погрешность.

Первым делом при проектировании необходимо выяснить, какой нагрузкой на сети будет обладать будущий объект. Для этого сначала необходимо выполнить расчет суммарной мощности всех осветительных приборов, которые будут запитываться на конкретном участке линии. Имея эти данные можно определить расчётные нагрузки (Рн) освещения питающей сети, а также вводов в жилые (либо производственные) постройки.

Перед этим нужно определить мощности всех ламп в сети. Расчет производится по следующей формуле:

В данном расчёте Мс. – это мощность ламп, Вт, а Кл. – количество ламп, шт.

Полученный по предыдущей формуле результат в дальнейшем используется для определения нагрузок запитывающей осветительной линии.

Расчет выполняется по формуле:

где, Мл. – это установленная расчётная мощность всех ламп;
Кспр. – коэффициент спроса, отображающий, как часто используется осветительное электрооборудование. Он служит в качестве поправки, обязательно вносимой в расчёты, т.к. на практике маловероятно, что все электроприборы будут включены одновременно и на полную мощность.
Данный коэффициент можно определять эмпирическим путём — для каждого отдельного объекта, или принимать подходящее значение из таблицы, приведённой ниже:

Читайте также:  Контроллер управления освещением для умного дома

Оптимальный вариант принимать значение Кспр. за 0,95.
Кп. – коэффициент потерь в пускорегулирующей аппаратуре ламп. (Для ртутных газоразрядных ламп он составляет 1,1, для люминесцентных – 1,2)

В случаях, когда от будущих линий планируется осуществлять смешанную запитку объекта – и для освещения, и для силовых нагрузок (тех же розеток, например) – тогда оба вида нагрузок нужно суммировать.
Расчетдля смешанных нагрузок выглядит так:

где, Нобщ. – расчётная общая нагрузка, в кВт;
Но – расчётная нагрузка осветительных линий, в кВт;
Нс – нагрузка силовая, расчётная в кВт.

Чтобы определить предельно допустимые сечения проводов, которые будут использоваться в линиях, нужно рассчитать, какие токи будут по ним проходить.
Так для однофазных линий, состоящих из двух проводов,расчет производится по формуле:

Для двухфазных линий, состоящих из трёх проводов (двух фаз и нуля)решение будет выглядеть так:

В случае прокладки трёхфазных линий, состоящих из четырёх проводов (трёх фаз и нуля) сечение определяется путём такого расчёта:

Как уже упоминалось, в любых линиях потерь не избежать– это распространённое и можно сказать нормальное явление. Мало того, то они происходят при транспортировке энергии от поставщика до нужного участка, так ещё и на точках её распределения между несколькими потребителями они нарастают.
Наша задача заключается в том, чтобы подобрать оптимальное сечение проводов, чтобы как можно больше снизить процент потерь распределенной энергии — до нормируемых ПУЭ интервалов: от 2,5 до 5 %. Также желательно сделать так, чтобы нагрузки на сети распределялись равномерно.

Базовый расчет потерь производится так:

Значение активного сопротивления (r0) можно рассчитать по формуле (она справедлива для алюминиевого или стального провода):

При планировании линий, протяжённостью в несколько километров, обязательно должно учитываться индуктивное сопротивление проводов (ИСП),непосредственно влияющее на потери напряжения в сетях. Так как при настолько больших дистанциях, энергия просто не может распределяться равномерно и без потерь.
По опыту работ — можно брать ИСП(в нашем расчёте помеченное как x0)алюминиевых (либо медных) проводов, сечением более чем 95 мм2, в размере 0,32 Ом на 1 километр. Это значение будет корректным в том случае, когда расстояние между проводами относительно небольшое (до 6,0 см). Для проводов сечением 10-25 мм2 используется коэффициент индуктивного сопротивления, равный 0,44 Ом/км. В этом случае допускается более внушительное расстояние между проводами – 10,0 см.

Как показывает практика, в низковольтных линиях, используемых преимущественно для освещения, достаточно сложно добиться равномерно распределенной нагрузки. Поэтому в данном случае лучше использовать четыре жилы проводов (т.е. монтировать трёхфазную линию). И тогда, перераспределяя нагрузки от освещения на фазные и нулевые провода, и силовые — на линейные, удаётся более равномерно разделить нагрузки между всеми фазами.

Для трёхфазных линий расчет потерь, происходящих в каждом проводе, будет выполняться по представленному ниже алгоритму, в котором первый блок — характеризует активные потери напряжения, а второй блок – реактивные.

Давайте для примера просчитаем линию освещения для гипотетического объекта. Заданные параметры приведены на схеме.

В нашем случае установлены однотипные светильники (N=12 шт.), мощностью 400 Вт, через одинаковые интервалы (Инт.=6м).
Рассчитаем расстояние (Р) до центра приложения нагрузок для каждой сети^

Р = Р1 + (( Инт.*(N – 1)/2),

где Р1 – это расстояние от щитка до первой лампочки в сети.

Подставляем значения для проведения расчётов:
Р1 = 15,7 + (6 + ((12-1)/2) = 48,7 метров
Р2 = 21,4 + (6 + ((12-1)/2) = 54,4 метров
Р3 = 23,5 + (6 + ((12-1)/2) = 56,5 метров
Р4 = 27,3 + (6 + ((12-1)/2) = 60,3 метров

Определим расчётные нагрузки, описанные во втором разделе (формулы 1 и 2):

Поскольку группы электроприборов у нас однотипные, значение будет одинаковым для всех линий:

Рн = (12шт*0,4 кВт) *1,1*1 = 5, 28 кВт

И тогда мощность питающей сети составит: 5,28*0,95*4 = 20,1 кВт

Теперь можно определить моменты нагрузки(МН) для каждой сети, рассчитываются они так :

Читайте также:  Индукционное освещение что это такое

где Рн – расчётные нагрузки, Р – расстояние.

МН1 = 5,28*48,7=257,1 кВт/м
МН2 = 5,28*54,4=287,2 кВт/м
МН3 = 5,28*56,5=298,3 кВт/м
МН4 = 5,28*60,3=318,4 кВт/м

Момент нагрузок для питающей сети (расстояние до щитка I=25 м):

МНс = 20,1 * 25 = 502,5 кВт/м

Итого сборный (или приведённый) момент нагрузки (МНс) по всем линиям равен:

МНс = 502,5+257,1+287,2+298,3+318,4 = 1663,5 кВт/м.

Определим теперь,какие будут потери напряжения для наших линий:

где, Нп — номинальное напряжение, создаваемое при холостой работе трансформатора(принимаем на 105%).
Нмд — минимально допустимое напряжение самых удаленных по сети лампочек(берём 95%);
ПНс — потери напряжения суммарные — до рассматриваемой сети, %(принимаем 3,56% и 3,64%).

Итак Пн = 105 – 95-(3,56-3,64) = 2,8 %

Рассчитаем, наконец, сечение подходящего для наших линий провода:

Сп = 1663,5 / (44*2,8) =13,5 мм2

Находим, какие токи будут проходить по нашим сетям:

I = (20,1*103)/ (3*220*0,6) = 50,76 А

Определяем процент потерь напряжения для каждой сети:

П1 = 257,1 /(3*44) = 1,95%
П2 = 287,2 /(3*44) = 2,17%
П3 = 298,3 /(3*44) = 2,26%
П4 = 318,4 /(3*44) = 2,41%

Как видим, прогнозируемый процент потери во всех случаях вписывается в нормы (до 5%).
На основании полученных данных можно подобрать наиболее подходящие по сечению и токам провода, пуско-регулирующее оборудование, корректировать мощности ламп и т.п. Для облегчения расчётного процесса придумано много полезных приложений, учитывающих все описанные величины. Они позволят не пересчитывать каждый раз всё вручную при замене какой-либо составляющей светотехнического проекта.

При создании проекта линий под осветительные сети нужно добиваться, чтобы напряжения нагрузки по ним распределялись максимально равномерно. Тогда проводники будут меньше нагреваться, снизится процент потерь и убытков, уменьшится риск возникновения аварий.

Источник

Выбор сечения кабеля и провода: по нагреву, по току, по потере напряжения

Выбор сечения кабеля и провода по нагреву

Выбор сечения из условий допустимого нагрева сводится к пользованию соответствующими таблицами длительно допустимых токовых нагрузок Iд при которых токопроводящи е жилы нагреваются до предельно допустимой температуры, установленной практикой так, чтобы предупредить преждевременный износ изоляции, гарантировать надежный контакт в местах соединения проводников и устранить различные аварийные ситуации, что наблюдается при Iд ≥ Ip, Ip — расчетный ток нагрузки.

Периодические нагрузки повторно-кратковременного режима при выборе сечения кабеля пересчитывают на приведенный длительный ток

где Iпв — ток повторно-кратковременного режима приемника с продолжительностью включения ПВ.

При выборе сечения проводов и кабелей следует иметь в виду, что при одинаковой температуре нагрева допустимая плотность тока токопроводящих жил большего сечения должна быть меньше, так как увеличение сечения их происходит в большей степени, чем растет охлаждающая поверхность ( смотрите рис. 1). По этой причине часто с целью экономии цветных металлов вместо одного кабеля большего сечения выбирают два или несколько кабелей меньшего сечения.

Рис 1. График зависимости допустимой плотности тока от сечения медных жил открыто проложенного трехжильного кабеля на напряжение 6 кВ с бумажной пропитанной изоляцией, нагретых током до температуры +65°С при температуре воздуха +25 «С.

При окончательном выборе селения проводов и кабелей из условия допустимого нагрева по соответствующим таблицам необходимо учитывать не только расчетный ток линии, но и способ прокладки ее, материал проводников и температуру окружающей среды.

Кабельные линии на напряжение выше 1000 В, выбранные по условиям допустимого нагрева длительным током, проверяют еще на нагрев токами короткого замыкания. В случае превышения температуры медных и алюминиевых жил кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ свыше 200 °С, а кабелей на напряжения 35 — 220 кВ свыше 125 °С сечение их соответственно увеличивают.

Сечение жил проводов и кабелей сетей внутреннего электроснабжения напряжением до 1000 В согласуют с коммутационными возможностями аппаратов защиты линий — плавких предохранителей и автоматических выключателей — так, чтобы оправдывалось неравенство I д / I з з, где k з — кратность допустимого длительного тока проводника по отношению к номинальному току или току срабатывания аппарата защиты I з (из ПУЭ). Несоблюдение приведенного неравенства вынуждает выбранное сечение жил соответственно увеличить.

Выбор сечения кабелей и проводов по потере напряжения

Сечение кабелей и проводов, выбранное из условий нагрева и согласованное о коммутационными возможностями аппаратов защиты, нужно проверять на относительную линейную потерю напряжения .

Читайте также:  Лампа для мачты освещения

где U — напряжение источника электрической энергии, Uном — напряжение в месте присоединения приемника.

Допустимое отклонение напряжения на зажимах двигателей от номинального не должно превышать ±5 %, а в отдельных случаях оно может достигать +10 %.

В осветительных сетях снижение напряжения у наиболее удаленных ламп внутреннего рабочего освещения и прожекторных установок наружного освещения не должно превышать 2,5 % номинального напряжения ламп, у ламп наружного и аварийного освещения — 5 %, а в сетях напряжением 12. 42 В — 10 %. Большее снижение напряжения приводит к существенному уменьшению освещенности рабочих мест, вызывает снижение производительности труда и может привести к условиям, при которых зажигание газоразрядных ламп не гарантировано. Наибольшее напряжение на лампах, как правило, не должно превышать 105 % его номинального значения.

Повышение напряжения сетей внутреннего электроснабжения выше предусмотренного нормами не допустимо, так как оно приводит к существенному увеличению расхода электрической энергии, сокращению срока службы силового и осветительного электрооборудования, а иногда к снижению качества выпускаемой продукции.

Рис. 2. Расчет потери напряжения в трехфазной трехпроходной линии при выборе сечения кабелей и проводов: а — с одной нагрузкой на конце линии, б — с несколькими рапределенными нагрузками.

Проверку сечения проводников трехфазной трехпроводной линии с одной нагрузкой в конце ее (рис. 2, а), характеризуемой расчетным током I p и коэффициентом мощности cos фи на относительную линейную потерю напряжения, выполняют так:

где Uном — номинальное линейное напряжение сети, В, Ro и Хо — соответственно активное и индуктивное сопротивление одного километра линии, выбираемое из справочных таблиц, Ом / км, P р — расчетная активная мощность нагрузки, кВт, L — длина линии, км.

Для неразветвленной магистральной трехфазной трехпроводной линии постоянного сечения, несущей распределенные вдоль нее нагрузки с расчетными токами I p 1 , I р 2 , . I р и соответствующими коэффициентами мощности cos фи1, cos фи2, . cos фи, удаленными от источника питания на расстояния L1, L2, . Ln (рис. 2, б), относительная линейная потеря напряжения до наиболее удаленного приемника:

где P р i активная мощность — расчетная i -й нагрузки, удаленной от источника питания на расстояние L.

Если расчетная относительная потеря напряжения d U получится выше допустимой нормами, приходится выбранное сечение увеличить с тем, чтобы обеспечить нормируемое значение этой величины.

При небольших сечениях проводов и кабелей индуктивным сопротивлением Хо можно пренебречь, что существенно упрощает соответствующие вычисления. в трехфазных трехпроводных распределительных сетях наружного освещения отличающихся значительной протяженностью, следует обращать внимание на правильное включение равноудаленных светильников, ибо в противном случае потери напряжения распределяются по фазам неравномерно и могут достигнуть нескольких десятков процентов по отношению к номинальному напряжению.

Выбор сечения кабеля по экономической плотности тока

Выбор сечения проводов и кабелей без учета экономических факторов может привести к значительным потерям электрической энергии в линиях и существенному возрастанию эксплуатационных расходов. По этой причине сечение проводников электрических сетей внутреннего электроснабжения значительной протяженности, а также сетей, работающих с большим числом часов использования максимума нагрузки — Tmax > 4000 ч — должно быть не менее отвечающего рекомендованной экономической плотности тока , устанавливающей оптимальное соотношение между капитальными затратами и эксплуатационными расходами, которое определяют так:

где I р — расчетный ток линии без учета повышения нагрузки при авариях и ремонтах, J э — экономическая плотность тока из расчета окупаемости капитальных затрат в течение 8 — 10 лет.

Расчетное экономическое сечение округляют до ближайшего стандартного и, если оно окажется свыше 150 мм2, одну кабельную линию заменяют двумя или несколькими кабелями с суммарным сечением, соответствующим экономическому. Применять кабели с малоизменяющейся нагрузкой сечением менее 50 мм 2 не рекомендуется.

Сечение кабелей и проводов напряжением до 1000 В при числе часов использования максимума нагрузки Tmax

В трехфазных четырехпроходных сетях сечение нейтрального провода не рассчитывают, а принимают не менее 50% от сечения, выбранного для главных проводов, а в сетях, питающих газоразрядные лампы, вызывающие появление высших гармоник тока, такое же, как и главных проводов.

Источник