Меню

Простой автомат уличного освещения



—>ЗАМЕТКИ ДЛЯ МАСТЕРА —>

Фотореле на симисторе

На схеме (рис.1) показана конструкция автоматического устройства включения и выключения уличного освещения. В предлагаемой конструкции функцию управления выполняет симистор. Благодаря тому, что его работа не зависит от полярности приложенного напряжения, отпадает необходимость в мощном двухполупериодном выпрямителе. Это позволяет упростить конструкцию автомата и уменьшить его габариты. Предлагаемое устройство рассчитано на управление источниками света общей мощностью до 400 Вт.

Фоторезистор R1 вместе с резисторами R2 и R3 образуют делитель напряжения, который определяет ток базы транзистора VT1. В дневное время суток, когда фоторезистор освещен, его сопротивление сравнительно невелико, поэтому транзистор VT1 открыт и насыщен, а VT2 закрыт. Коллекторный ток транзистора VT2, а следовательно, и ток управляющего электрода симистора практически равны нулю. Симистор, таким образом, закрыт, и ток через нагрузку не протекает. С уменьшением освещенности сопротивление фоторезистора возрастает, и ток базы транзистора VT1 начинает уменьшаться. При достижении определенного значения транзистор VT1 выходит из насыщения и начинает закрываться. Увеличивающееся падение напряжения на резисторе R7 ускоряет закрывание транзистора VT1 и открывание VT2. Ток управляющего электрода симистора, протекающий через открытый транзистор VT2 и резисторы R6, R7, поддерживает симистор открытым на протяжении обоих полупериодов сетевого напряжения. Следовательно, лампы сразу начинают с ветить в полный накал. Процесс выключения фотореле происходит в обратном порядке. Порог срабатывания фотореле устанавливают переменным резистором R2, а резистор R3 служит для ограничения тока делителя при попадании на фотоприемник прямых солнечных лучей. Резистор R6 определяет ток управляющего электрода симистора, который при открытом транзисторе VT2 должен быть больше тока включения симистора, но меньше допустимого коллекторного тока транзистора VT2. Резистор R5 уравнивает напряжение на управляющем электроде и катоде симистора, когда транзистор VT2 закрыт. Это обеспечивает надежное выключение с имистора и помехоустойчивость фотореле в целом. В устройстве использованы транзисторы VT1 и VТ2—КТ315Г или КТ315Е с коэффициентом передачи тока не менее 60.

Устройство, собранное безошибочно и из элементов с указанными на схеме типономиналами, в налаживании не нуждается, необходимо только установить порог срабатывания. Монтируют фотореле в таком месте, чтобы свет от ламп, которыми оно управляет, не попадал на фотоприемник. Во избежание попадания в коробку воды и посторонних предметов входной патрубок ее должен быть направлен вниз, а крышку после установки герметизируют водостойким лаком или клеем.

Автомат – выключатель освещения

Это устройство (рис.2) предназначено для автоматического включения электроосвещения при наступлении темноты и его выключения в светлое время суток.

Его светочувствительным прибором является фоторезистор R 1, включенный на входе порогового устройства (элементы DD 1.1, DD 1.3). При нормальной освещенности сопротивление фоторезистора мало, поэтому на выходе элемента DD 1.3 будет напряжение высокого уровня и генератор импульсов, собранный на элементах DD 1.2, DD 1.4, не работает. На выходе генератора транзисторы VT 1, VT 2 выполняют функцию согласующего устройства с симистором. В таком режиме работы устройства на управляющий электрод симистора VS 1 никаких сигналов не подается, поэтому он закрыт и осветительная лампа HL 1 обесточена.

С наступлением темного времени суток сопротивление фоторезистора возрастает, напряжение на выходе порогового устройства уменьшается. И когда оно уменьшится до низкого уровня, генератор начнет работать и на выходе согласующего устройства появятся импульсы с частотой следования около 1 кГц. Так как эти импульсы разнополярные, то положительные импульсы замыкаются на корпус через диод VD 3, а отрицательные – поступают на управляющий электрод симистора.

При этом симистор открывается практически в самом начале каждого полупериода сетевого напряжения, поэтому осветительная лампа светится на полную мощность.

Выпрямитель автомата образуют стабилитрон VD 2, диод VD 1 и конденсатор С4, который гасит избыточное напряжение сети. Пороговое устройство имеет гистерезис своей характеристики, что обеспечивает устойчивое срабатывание автомата при переходе из одного режима работы в другой.

Утром, когда естественная освещенность увеличивается, происходит обратный процесс, и осветительная лампа гаснет.

Фотодатчик размещают в месте, защищенном от прямых солнечных лучей, атмосферной влаги и света осветительных ламп. Его можно поместить в стеклянную пробирку, которая затем надежно герметично закупоривают. Если мощность осветительных ламп больше 500 Вт, то симистор устанавливают на теплоотводящий радиатор.

Налаживание автомата сводится к установке резистором R 2 требуемого порога срабатывания.

«Конструкции на логических

элементах цифровых микросхем»

Автомат уличного освещения

Схема автомата, позволяющего включать вечером и выключать утром уличное освещение, показана на рисунке 3.

Датчиком освещения является фоторезистор R 4. Когда он затемнен, его сопротивление велико (несколько мегаом), на входах логического элемента DD 1.1 – напряжение высокого уровня, такое же напряжение на выходе элемента DD 1.2. Транзистор VT 1 и VS 1 открыты, и уличные осветители EL 1 включены.

При наступлении рассвета сопротивление фотодатчика R 4 уменьшается, логические элементы DD 1.1 и DD 1.2 переключаются в противоположные состояния, транзистор VT 1 и тиристор VS 1 закрываются и фонари на улице гаснут.

На логических элементах DD 1.1, DD 1.2 и резисторах R 2, R 3 выполнен триггер Шмитта. Это устройство, как и обычный (счетный) триггер, обладает двумя устойчивыми состояниями. Но в отличии от счетного триггера, состояние которого изменяется после прихода очередного импульса на вход, триггер Шмитта переключается при изменении уровня входного напряжения. Можно так подобрать резисторы R 2 и R 3, что пороги переключения при увеличении входного напряжения и при его уменьшении не будут равны между собой. Например, для нашего триггера при увеличении входного напряжения порог переключения может составлять 3В, а при уменьшении напряжения 2В. Разность порогов переключения называют гистерезисом триггера. Гистерезис тем больше, чем больше отношение R 2/ R 3.

Если в автомате не использовать триггер Шмитта (т.е. резистор R 3 исключить, а R 2 замкнуть накоротко), то при изменении освещенности может наблюдаться мерцание осветительных ламп, при этом на выходе элемента DD 1.2 будет напряжение, находящееся между напряжениями низкого и высокого уровней. В триггере Шмитта такого не может быть, поскольку обратная связь через резистор R 3 с выхода элемента DD 1.2 на вход элемента DD 1.1 ускорит процесс переключения, сделает его лавинообразным. Такую обратную связь называют положительной.

В качестве датчика освещенности можно использовать фоторезисторы ФС-К (с любыми цифрами), а также фотодиоды ФД-1, ФД-2, ФД-3 (подключают катодом к резисторам R 1, R 2).

Фотодатчик следует располагать в таком месте, куда не попадает прямой свет фонарей EL 1, иначе автомат будет работать неустойчиво. Резистором R 1 можно изменять уровень освещенности, при котором включаются и выключаются осветители. Разницу в порогах включения и выключения осветительных ламп можно изменять подбором резистора R 2.

Максимальная мощность осветительных ламп определяется типами тиристора VS 1 и диодов VD 2- VD 5. В данном случае она составляет 2 кВт. Тиристор и диоды устанавливают на радиаторы.

Фотореле в подъезд

Схема прибора, показанная на рис.4, устанавливается в подъезде жилого дома и включает в нем освещение с наступлением темноты, а на рассвете выключает его.

Читайте также:  Промышленные фотореле для освещения

При освещении фоторезистора R 4 его сопротивление снижается, падение напряжения на нем уменьшается, транзистор VT 1 закрывается, реле К1 и лампа EL 1 выключаются, при затемнении фоторезистора все происходит в обратном порядке и лампа включается. Конденсатор С1 – К73-17. Его можно заменить пленочным конденсатором зарубежного производства на напряжение не менее 630 В постоянного или 275 В переменного тока. Вместо зарубежного транзистора SS 9013 H подойдет КТ680А. Фоторезистор установлен импортный. Его сопротивление, равное 30 кОм в темноте, при дневном свете уменьшается до 6 кОм.

Реле использовано с обмоткой сопротивлением 1600 Ом. Измеренный мультиметром ток срабатывания – 2,58 мА. Контакты реле должны быть рассчитаны на коммутацию соответствующей нагрузке.

Простой выключатель ночного освещения

Одно из достоинств микросхемы – фазового регулятора КР1182ПМ1 в том, что для управления нужно изменять сопротивление между двумя выводами 6 и 3, на которых имеется постоянное напряжение. Это позволяет вместо переменного резистора, положенного по типовой схеме, использовать различные схемы на транзисторах и цифровых микросхемах.

На рисунке 5 приводится схема простого сумеречного выключателя, включающего на участке с наступлением темноты, и выключающего его на рассвете. Благодаря тому, что управляет лампой не ключ, а фазовый регулятор, лампа включается не сразу, а постепенно. Это способствует долговечности лампы накаливания.

Резистор R 2 служит для установки порога включения / выключения, резистор R 3 – для установки яркости максимальной освещенности. Мощность лампы не более 150 Вт.

Автомат уличного освещения

На рис.6 показана схема фотореле, предназначенного для включения света в темное время суток и включение на рассвете.

Рис.6 Принципиальная схема и печатная плата фотореле

Фотодатчик – VT 1 используется с «шариковой» компьютерной мыши и представляет собой пару фототранзисторов без базовых выводов, расположенных в одном корпусе. Фототранзисторы структуры n — p — n , коллектора соединены вместе и выведены на средний вывод корпуса, а эмиттеры – на крайние.

За включение света отвечает левый по схеме фототранзистор датчика VT 1. Порог снижения освещенности, при достижении которого должна включится осветительная лампа, устанавливается резистором R 1.

Схема выключения (на правом транзисторе VT 1) работает противоположным образом. Подстроечным резистором R 2 устанавливают уровень, при возрастании освещенности до которого осветительная лампа должна выключиться.

Автомат включения уличного освещения на транзисторах

Датчик фотореле размещается на улице, защитив его от прямого попадания искусственного света. Реле срабатывает с наступлением ночного времени суток и автоматически включает питание лампы уличного освещения или лестничной клетки, а утром выключать его.

Принципиальная схема представлена на рис.7.

Схема фотореле обладает неплохой чувствительностью, так как для его питания используется более высокое напряжение – около 18В. Контакты К1.1 электромагнитного реле К1, используемого в автомате, нормально замкнутые.

В ночное и вечернее время суток фоторезистор R 1 (ФСК-1) освещен очень слабо и его сопротивление составляет несколько сотен килоом. При этом коллекторные токи транзистора VT 1, в базовую цепь которого включен фоторезистор, и транзистора VT 2, база которого соединена непосредственно с эмиттером первого транзистора, не превышает тока отпускания электромагнитного реле К1. В это время осветительная лампа Н1, подключенная к электроосветительной сети через нормально замкнутые контакты К1.1 реле, горит.

С наступлением рассвета фоторезистор освещается все сильнее и его сопротивление уменьшается до 80 – 100кОм. При этом токи транзисторов усилителя увеличиваются. При токе 20 – 25 мА реле срабатывает и его контакты, размыкаясь, разрывают цепь питания осветительной лампы. А вечером, когда сопротивление фоторезистора снова начнет увеличиваться, а коллекторные токи соответственно уменьшаться, реле отпустит и замыкающими контактами включит освещение.

Выпрямитель автомата двухполупериодный. Выпрямленное напряжение сглаживается конденсатором С1 и стабилизируется двумя стабилитронами V 5 и V 4 серии Д809 (можно Д814Б). Номинальное напряжение конденсатора С1 не должно быть меньше 25В.

В автомате используется реле типа РЭС-22 (паспорт РФ4.500.131), РСМ-1 (паспорт Ю.171.81.37) или другое аналогичное с обмоткой сопротивлением 650-750 Ом.

Для увеличения задержки времени выключения осветительной лампы питающее напряжение автомата надо уменьшить на 3-4 В, а для уменьшения, т.е. более раннего выключения, наоборот, увеличить на 3-4 В. Это можно сделать при использовании в блоке питания стабилитронов с другими напряжениями стабилизации: в первом случае – стабилитронов Д808 или одного (вместо двух) стабилитрона Д813, во втором – трех стабилитронов Д808 или двух стабилитронов Д811 или Д814Г. Чувствительность автомата можно также регулировать подбором резистора R3 .

Источник

Схемы автоматов включения освещения

Чтобы свет, скажем, на лестничной площадке или на номерном знаке дома, зажигался автоматически, как только стемнеет на улице, и выключался с рассветом, осветительную лампу нужно подключить к автомату, следящему за наружным освещением. Познакомимся с двумя конструкциями таких автоматов.

Первый из них (рис. А-12) выполнен на четырех транзисторах. Датчиком освещенности — чувствительным элементом автомата — служит фоторезистор R1. Он подключен к источнику питания через резисторы R2 и R3 и образует вместе с ними цепь делителя напряжения, сопротивление одного из плеч которого (от движка подстроечного резистора R2 до минусового провода питания) изменяется в зависимости от освещенности.

Делитель напряжения подключен к эмиттерному повторителю на транзисторе VT1, который позволяет согласовать сравнительно высокое сопротивление делителя напряжения с низким сопротивлением последующих каскадов автомата.
С нагрузкой эмиттерного повторителя (резистор R4) соединен триггер Шмитта, выполненный на транзисторах VT2, VT3. Далее следует каскад на транзисторе VT4 — усилитель управляющего сигнала. В цепь эмиттера этого транзистора включен управляющий электрод тринистора VS1, выполняющего роль бесконтактного выключателя,— он управляет осветительной лампой EL1, стоящей в анодной цепи тринистора.

Питается автомат от сети 220 В через выпрямитель, выполненный на диодах VD2, VD3. Выпрямленное напряжение фильтруется конденсатором С1 и стабилизируется кремниевым стабилитроном VD1. Конденсатор С2 выполняет роль гасящего резистора, на котором падает излишек напряжения.

Если освещенность на улице достаточна, напряжение на выходе делителя (движок резистора R2), а значит, на выходе эмиттерного повторителя, таково, что триггер Шмитта находится в устойчивом состоянии, при котором транзистор VT2 открыт, a VT3 закрыт. Будет закрыт и транзистор VT4, а следовательно, на управляющем электроде тринистора VS1 не будет напряжения и тринистор также окажется закрытым. Лампа освещения погашена.

При уменьшении освещенности сопротивление фоторезистора возрастает, напряжение на выходе эмиттерного повторителя уменьшается. Когда оно достигнет определенного значения, триггер перейдет в другое устойчивое состояние, при котором транзистор VT2 закрыт, a VT3 открыт. При этом откроется транзистор VT4 и через управляющий электрод тринистора начнет протекать ток. Тринистор откроется, лампа освещения вспыхнет.

Утром, когда освещенность достигает порогового значения, триггер вновь переходит в первоначальное состояние и лампа гаснет.

Нужный порог срабатывания устройства устанавливают подстроечным резистором R2.
При указанных на схеме деталях к автомату можно подключать лампу мощностью до 60 Вт. Вместо ФС-К1 вполне применим другой аналогичный по параметрам фоторезистор. Транзисторы VT1 — VT3 могут быть любые из серий МП39—МП42, но с коэффициентом передачи тока не ниже 50, a VT4 — любой из серий МП35—МП38 с коэффициентом передачи тока не менее 30. Вместо стабилитрона Д814Д подойдет Д813, вместо диодов Д226Б — любые другие выпрямительные, рассчитанные на выпрямленный ток не менее 50 мА и обратное напряжение не ниже 300 В.
Подстроечный резистор R2 — СПЗ-16, остальные резисторы — МЛТ-0,25. Конденсатор С1 — К50-6, С2 — МБГО или другой бумажный, рассчитанный на работу в цепях переменного и пульсирующего тока I и с номинальным напряжением не ниже указанного на схеме.

Читайте также:  Освещение рабочего стола светодиодными

Детали автомата смонтированы на плате (рис. А-13) из одностороннего фольгированного стеклотекстолита. Под тринистор в плате просверлено отверстие, вокруг которого оставлена фольга — с ней и будет контактировать корпус тринистора, являющийся анодом.

Выводы катода и управляющего электрода расположены сверху тринистора — их соединяют монтажными проводниками в изоляции с соответствующими точками печатной платы. Конденсатор С2 крепят к плате винтами (отверстия под винты на плате не показаны).

Плату размещают в корпусе из изоляционного материала и соединяют монтажными проводами в изоляции с фоторезистором, а сетевыми проводами в хорошей изоляции — с сетью и осветительной лампой. Фоторезистор укрепляют, например, на окне, но так, чтобы на его чувствительный слой не попадали прямые лучи солнца или свет от уличных фонарей.

А вот другая конструкция (рис. А-14), содержащая всего два транзистора: полевой VT1 и однопереходный VT2. На однопереходном выполнен генератор импульсов, который включается при определенном напряжении на эмиттере. А оно, в свою очередь, определяется освещенностью чувствительного слоя фоторезистора R1.

На полевом же транзисторе собран каскад, способствующий более четкому «срабатыванию» генератора. Как это происходит, станет ясно из описания работы автомата. А пока продолжим рассказ об устройстве конструкций.
С одной из баз однопереходного транзистора соединен управляющий электрод тринистора, в анодной цепи которого стоит разъем XS1 — в него включают осветительную лампу. Напряжение на тринистор и лампу поступает через диодный мост, составленный из диодов VD4 — VD7. Благодаря ему тринистор защищен от обратного напряжения на аноде.

Пульсирующее напряжение (частота пульсаций 100 Гц) подается через резистор R7 на стабилитрон VD3, который сглаживает пульсации благодаря своему стабилизирующему свойству. Еще более пульсации выпрямленного напряжения сглаживаются конденсатором С 4 — с него постоянное напряжение подается на цепи автомата.

Итак, автомат включен в сеть, фоторезистор направлен светочувствительным слоем на улицу. Пока светло, сопротивление фоторезистора мало, а значит, мало и напряжение на эмиттере однопереходного транзистора. Генератор не работает, осветительная пампа не горит.

По мере снижения освещенности сопротивление фоторезистора растет, а значит, возрастает и напряжение на эмиттере транзистора VT2.

При определенной освещенности фоторезистора сопротивление его становится таким, что генератор начинает работать. Иа резисторе R6 появляется импульсное напряжение положительной полярности, которое открывает тринистор и включает лампу. Частота следования импульсов значительно больше частоты пульсаций питающего напряжения, поэтому тринистор открывается практически в начале каждого полупериода сетевого напряжения.

А что же каскад на транзисторе VT1? Первые же импульсы генератора поступают с резистора R6 через конденсатор С3 на выпрямитель, собранный на диодах VD1, VD2. В результате на резисторе нагрузки R2, иначе говоря, на затворе полевого транзистора VT1, появляется отрицательное (по отношению к истоку) постоянное напряжение, которое закрывает этот транзистор. Напряжение на стоке возрастает, увеличивается напряжение и на эмиттере однопереходного транзистора. Благодаря этому генератор работает надежнее и не выключается даже при некоторых колебаниях освещенности фоторезистора.
Утром, когда забрезжит рассвет и возрастет освещенность фоторезистора, сопротивление его упадет настолько, что генератор выключится. Лампа освещения погаснет. В этот момент откроется транзистор VT1 и еще более снизит напряжение на эмиттере однопереходного транзистора.
Таким образом, благодаря каскаду на транзисторе VT1 пороги «срабатывания» и «отпускания» генератора на транзисторе VT2 очень четкие и несколько отличаются друг от друга по напряжению.

Фоторезистор может быть ФС-К1, СФ2-5, СФ2-6, постоянные резисторы — МЛТ-2 (R7) и МЛТ 0,125 или МЛТ-0,25 (остальные). Конденсаторы С1 — С3 — КЛС, КМ, МБМ; С4— К50-6 или К50-3. Вместо транзистора КП3О3Б подойдет КП3О3А, а вместо КТ117Б — другой транзистор этой серии. Диоды VD1, VD2 — любые из серий Д2, Д9, КД102, КД503; VD4 — VD7 — любые выпрямительные с допустимым обратным напряжением не менее 300 В и выпрямленным током, допускающим питание лампы данной мощности. Вместо стабилитрона КС518А (он на напряжение стабилизации 18 В) можно использовать два последовательно соединенных стабилитрона Д814Б или Д814В. При использовании осветительной лампы мощностью 100 Вт тринистор может быть указанной на схеме серии с буквенными индексами К—Н.

Если же используется лампа мощностью до 60 Вт, подойдет тринистор КУ201Л или КУ201М.

Как и в предыдущем автомате, все детали, кроме фоторезистора, смонтированы на печатной плате (рис. А-15) из одностороннего фольгированного стеклотекстолита. Плату затем укрепляют в корпусе из изоляционного материала. Рекомендации по установке фоторезистора те же, что и в предыдущем случае.
При проверке автомата требуемый порог срабатывания более точно устанавливают подбором резистора R3. Его сопротивление не должно быть менее 10 кОм.
Но не только для лестничной клетки может быть полезен автоматический включатель освещения. Он найдет применение и в квартире, например, в ванной комнате или другом помещении. И тогда вы можете быть спокойны — оставить бесцельно горящим свет в этих помещениях вряд ли удастся. Да и выключателем теперь пользоваться не нужно — автомат полностью заменит его и будет сам включать освещение тогда, когда оно действительно нужно.

Схема одного из вариантов такого автомата приведена на рис. А-16. Автомат включает освещение, как только открывают дверь. Если дверь закрывают изнутри на запор, лампа освещения продолжает гореть. При закрывании двери снаружи (или изнутри, но не на запор) следует выдержка времени 8. 10 с, после чего свет гаснет. Яркость света в этом автомате нарастает плавно (за 1. 2 с), что значительно продляет срок службы лампы.

Устройство датчика, следящего за положением двери и ее запора, показано на рис. А-17. В дверной раме закреплен геркон (герметизированный контакт), а напротив него в дверь врезан постоянный магнит. Контакты геркона разомкнуты, когда дверь открыта, а значит, магнит удален, и замыкаются при закрывании двери благодаря действию магнитного поля постоянного магнита. Если же дверь закрывают изнутри на запор, его стальной язычок (или железная пластина, связанная с ним) экранирует геркон от магнитного поля и контакты геркона оказываются разомкнутыми.

Геркон (SF1 на схеме) включен в цепь зарядки конденсатора С1. Если дверь открыта (или закрыта изнутри на запор), контакты геркона находятся в показанном на схеме состоянии. Конденсатор О начинает заряжаться через цепочку VD1, С2, VD3. Поскольку зарядная цепь питается не постоянным током, а трапецеидальными импульсами положительной полярности (они образуются из-за ограничения стабилитроном VD4 импульсов напряжения частотой 100 Гц, поступающих на него через резистор R7 с двухполупериодного выпрямителя на диодах VD5 — VD8), конденсатор С1 заряжается «порциями» от каждого импульса.

Читайте также:  Правило по установки освещения автомобильных дорог

Обеспечивается такой режим еще и тем, что к моменту начала следующего импульса конденсатор С2 разряжается. Это происходит в момент окончания предыдущего импульса — тогда напряжение конденсатора С2 оказывается приложенным через диод VD2 и резисторы R3, R4 к эмиттерному переходу транзистора VT1. Транзистор открывается и разряжает конденсатор. По мере зарядки конденсатора С1 начинает открываться транзистор VT2, коллекторный ток его возрастает. При определенном значении этого тока начинает работать генератор импульсов, собранный на транзисторном аналоге тринистора (транзисторы VT3 и VT4) и конденсаторе СЗ. Как только напряжение на конденсаторе СЗ (оно появляется в результате зарядки конденсатора коллекторным током транзистора VT2) достигает порогового, аналог тринистора «срабатывает» и конденсатор разряжается через управляющий электрод тринистора VS1 и резистор R5. Тринистор открывается (и остается открытым до конца полупериода сетевого напряжения), замыкает диагональ моста VD5 — VD8, и лампа EL1 зажигается. Ее яркость зависит от продолжительности зарядки конденсатора СЗ до напряжения «срабатывания» аналога тринистора.

Продолжительность, в свою очередь, определяется током коллектора транзистора VT2, а значит, зарядкой конденсатора С1 до напряжения полного открывания транзистора VT2. Происходит это примерно через 1. 2 с — за такое время яркость лампы будет нарастать до максимальной.

Стоит закрыть дверь (или при закрытой двери не задвинуть запор)— и замкнувшиеся контакты геркона зашунтируют цепь зарядки конденсатора С1. Он начнет разряжаться через резисторы R1, R6 и эмиттерный переход транзистора VT2. Спустя 8. 10 с напряжение на конденсаторе упадет настолько, что транзистор VT2 начнет закрываться. Яркость лампы будет плавно уменьшаться, а затем лампа погаснет.

Кроме указанного на схеме, можно использовать тринисторы КУ201 Л, КУ202К—КУ202Н. Транзисторы КТ201Г заменимы на транзисторь той же серии или на любые транзисторы серии КТ315; П416Б — на П416 П401—П403, ГТ308; МП114 — нг МП115, МП116, КТ203. Вместе диодов Д220 подойдут Д223, КД102, КД103. Конденсатор С1 — К50-6; С2, СЗ — МБМ, КМ-4, КМ-5. Резистор R7 — МЛТ-2, остальные — МЛТ-0,5. Вместо стабилитрона Д814Д подойдет Д813, а вместо диодов VD5—VD8 — любые выпрямительные диоды, рассчитанные на обратное напряжение не ниже 300 В и выпрямленный ток не менее 300 мА. Геркон — любой другой с нормально разомкнутыми контактами и «срабатывающий» от данного постоянного магнита на заданном расстоянии.

Детали автомата можно смонтировать на печатной плате (рис. А-18) из фольгированного материала и укрепить плату в любом подходящем корпусе из изоляционного материала. Корпус желательно расположить вблизи выключателя, чтобы короче были соединительные проводники от диодного моста — их подключают к контактам сетевого выключателя, а ручку выключателя ставят в положение «Выключено». Выводы геркона соединяют с автоматом многожильными монтажными проводниками в изоляции.

Как правило, автомат не требует налаживания и начинает работать сразу. Изменить продолжительность плавного нарастания яркости света можно подбором конденсатора С2 (при уменьшении его емкости продолжительность нарастания яркости увеличивается). Для изменения задержки выключения света следует подобрать конденсатор С1 (задержка увеличивается при увеличении его емкости).

Автомат способен управлять лампой мощностью 60 Вт. Если применена лампа большей мощности, нужно установить тринистор на теплоотводящий радиатор и собрать выпрямитель на диодах с большим допустимым выпрямленным током.
А вот другой автомат (рис. А-19) подобного назначения, в котором используется всего один транзистор. Автомат также можно подключать параллельно выводам выключателя Q1 подсобного помещения.

Органами управления автомата являются выключатель SA1, контакты которого образуют наружные задвижка и скоба на дверной раме, и геркон SF1, установленный на двери аналогично предыдущему варианту, но в верхнем углу дверной рамы. Когда дверь закрыта, контакты SA1 могут быть как замкнуты, так и разомкнуты (если помещение используется и задвижка открыта), а контакты SF1 — только разомкнуты. При открывании двери контакты выключателя оказываются разомкнутыми, а контакты геркона — замкнутыми. Через резистор R2 и геркон на управляющий электрод три-нистора VS1 подается напряжение. Тринистор открывается, лампа освещения EL1 зажигается.

В этот момент на резисторе R1 появляется пульсирующее напряжение (амплитудой около 1 В при мощности осветительной лампы 40 Вт и почти 2 В при мощности лампы 100 Вт). Оно сглаживается цепочкой VD2C1. G конденсатора С1 постоянное напряжение поступает на генератор, собранный на транзисторе VT1. Частота следования импульсов генератора составляет 3 кГц. С обмотки 111 трансформатора Т1 импульсы подаются на управляющий электрод тринистора, поэтому тринистор остается открытым после закрывания двери изнутри помещения и размыкания контактов геркона.

По окончании пользования помещением дверь закрывают на наружную задвижку, контакты SA1 замыкаются и шунтируют обмотку II трансформатора. Колебания генератора срываются, тринистор закрывается, лампа освещения гаснет.
В генераторе может работать любой маломощный германиевый транзистор структуры p-n-р со статическим коэффициентом передачи тока не менее 50. Вместо диодного моста VD1 можно установить четыре диода КД105Б—КД105Г или аналогичные по выпрямленному току и обратному напряжению. Тринистор — серии КУ201 с буквенными индексами К—Н. Конденсатор О —К50-12 (подойдет и К50-6); С2 — МБМ; резисторы — МЛТ-2.

Трансформатор Т1 самодельный, он выполнен на кольце типоразмера К10X6X4 из феррита М200НМ. Обмотка I содержит 2ХЮ0 витков провода ПЭЛШО 0,1, обмотка II — 6. 10 витков тонкого монтажного провода в поливинилхлоридной изоляции, обмотка III—40 витков ПЭЛШО 0,1.

Под эти детали рассчитана печатная плата (рис. А-20) из одностороннего фольгированного стеклотекстолита. Печатные проводники выполнены не травлением в растворе, как это делают обычно, а прорезанием в фольге изолирующих канавок специальным резаком или острым ножом. Плату с деталями укрепляют в корпусе, который размещают в удобном месте помещения. Как и в предыдущем случае, геркон (он может быть любой, но обязательно с нормально замкнутыми или переключающими контактами) соединяют с автоматом многожильными монтажными проводниками.

Если автомат смонтирован без ошибок, никакого налаживания не понадобится. Может случиться, что генератор не возбуждается с данной осветительной лампой (ведь от ее мощности зависит напряжение питания генератора). Тогда придется либо поставить резистор R1 с большим сопротивлением, либо другой транзистор — с большим коэффициентом передачи.

В случае нормальной работы генератора и неоткрывающемся тринисторе (свет гаснет при закрывании двери, но не замкнутых контактах SA1), нужно изменить полярность подключения выводов обмотки III.

Б.С. Иванов. Энциклопедия начинающего радиолюбителя.

Источник

Свет и его значения © 2022
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Здесь Ваше мнение имеет значение
поставьте вашу оценку (оценили — 13 раз)