Меню

От чего зависит угол преломления света



Особенности явления преломления света с точки зрения физики

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.
Читайте также:  Датчик движения для ламп дневного света

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.

Читайте также:  Одн за оплату света что это

Источник

Преломление света. Закон преломления света

Урок 41. Физика 8 класс (ФГОС)

Конспект урока «Преломление света. Закон преломления света»

На прошлых уроках мы говорили о том, что в однородной среде свет распространяется прямолинейно. Если пучок света падает на границу раздела двух прозрачных сред, то часть его отражается и возвращается в первоначальную среду. Это явление называется отражением света.

Однако, свет, падая на границу раздела двух сред, не только отражается от неё, но и частично проходит во вторую среду и распространяется в ней. И сегодня мы с вами рассмотрим это явление более подробно.

Для начала проведём такой опыт. Возьмём стакан с водой, опустим в него карандаш так, чтобы он был расположен вертикально. Изменив угол наклона увидим, что на границе воды и воздуха карандаш кажется переломленным.

Это объясняется тем, что световой пучок при переходе из одной среды в другую изменяет направление распространения.

Изменение направления распространения света при переходе из одной среды в другую называют преломлением света.

Преломление света вы можете наблюдать, когда опускаете ложку в стакан с чаем, входите в воду в реке или в море.

А каким законам подчиняется преломление света? Чтобы ответить на этот вопрос, проведём такой опыт. В центре оптического диска закрепим тонкую стеклянную пластинку и направим на неё узкий пучок света.

Часть света отразиться от пластинки, а часть света проникает через пластинку. Этот луч света называется преломлённым лучом.

Угол между перпендикуляром, восставленным к границе раздела двух сред в точке падения луча, и преломлённым лучом называется углом преломления.

Сравнив углы падения и преломления, мы видим, что угол преломления меньше угла падения.

Увеличим угол падения — угол преломления тоже увеличивается, но по-прежнему он меньше угла падения.

Если стекло заменить, например, водой и пустить световой луч под тем же углом, что и на стеклянную пластинку, то угол преломления в воде будет несколько больше, чем в стекле, но всё равно меньше угла падения.

Различие углов падения и преломления обусловлено тем, что стекло, вода и воздух имеют разную оптическую плотность.

Не путайте оптическую плотность с плотностью вещества. Есть вещества, у которых плотность меньше, чем плотность воды, например, скипидар. В то же время скипидар оптически более плотный, чем вода. Дело в том, что оптическая плотность среды характеризуется скоростью распространения света в ней. Чем больше скорость распространения света в среде, тем меньше её оптическая плотность.

Следовательно, оптическая плотность стекла больше, чем оптическая плотность воздуха, так как скорость распространения света в нём меньше.

Рассмотрим ещё один пример. Стеклянный сосуд, на дне которого находится плоское зеркало, заполним водой, подкрашенной флюоресцирующей жидкостью.

На поверхность воды под некоторым углом к ней направим пучок света. Он изменяет своё направление, поскольку вода — среда оптически более плотная, чем воздух.

Из опыта видно, что при переходе света из воздуха в воду угол падения больше угла преломления, а при переходе из воды в воздух угол падения меньше угла преломления.

Читайте также:  Вокруг света про морскую змею

На основании проделанных опытов мы можем сделать следующие выводы. Во-первых, если луч света переходит из среды оптически менее плотной в среду оптически более плотную, то угол преломления меньше угла падения. То есть преломлённый луч как бы прижимается к перпендикуляру

Если свет переходит из среды оптически более плотной в среду оптически менее плотную, то угол преломления больше угла падения. То есть преломлённый луч прижимается к границе раздела двух сред. Этот вывод логически следует из свойства обратимости, которое характерно не только для падающего и отражённого лучей, но и для падающего и преломлённого лучей.

И вновь обратимся к опыту. В центре оптического диска закрепим сосуд с водой и направим на него узкий пучок света. Будем менять угол падения света и следить за изменением угла преломления.

При изменении угла падения, угол преломления тоже меняется и соотношение между углами не сохраняется. Однако, если составить отношение синусов углов падения и преломления, то мы увидим, что оно остаётся постоянным:

Таким образом, для любой пары веществ можно записать, что отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред:

Эту величину называют относительным показателем преломления для двух сред. Чем он больше, тем сильнее преломляется свет на границе раздела двух сред.

Мы уже говорили, что преломляющая способность вещества зависит от его оптической плотности, которая, в свою очередь, зависит от скорости распространения света в веществе. Таким образом, относительный показатель преломления показывает, во сколько раз скорость света в первой по ходу луча среде отличается от скорости распространения света во второй среде:

Если свет падает из вакуума в вещество, то вводится величина, называемая абсолютным показателем преломления. Он показывает, во сколько раз скорость света в вакууме больше чем в данной среде.

где с = 3 ∙ 10 8 м/с.

Теперь мы можем сформулировать закон преломления света: лучи, падающий и преломлённый, лежат в одной плоскости с перпендикуляром, проведённым в точке падения луча к границе раздела двух сред. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред:

Примечательно, что закон преломления света был открыт опытным путём голландским учёным В. Снеллиусом ещё в 1621 г. Однако результаты многочисленных экспериментов по оптике им опубликованы не были. Позже, после смерти учёного, они были обнаружены в архивах Р. Декартом, который использовал их при написании своих «Рассуждений о методе . » в приложении «Диоптрика» в1637 г.

Отметим и то, что когда луч падает перпендикулярно на границу раздела двух сред, он не испытывает преломления, что можно подтвердить опытом:

Разумеется, что не будет преломления и на границе, разделяющей две среды с одинаковой оптической плотностью, т. е. на границе раздела сред, в которых скорость света одинакова.

Пример решения задач.

Задача. На дне водоёма глубиной 3 м находится источник света. На какой глубине увидит источник света наблюдатель, если он смотрит с лодки вертикально вниз, а показатель преломления воды равен 1,33?

Источник