Меню

Наибольшая длина волны света 0 275



решите задачу, заранее спасибо! Наибольшая длина волны света, при которой происходит фотоэффект для вольфрама, 0,275 мкм. Найти

работу выхода электронов из вольфрама; наибольшую скорость электронов, вырываемых из вольфрама светом с длиной волны 0,18 мкм; наибольшую энергию этих электронов

Ответ: 72*10^-20

Работа выхода = hc/L(кр.)

А=19,86*10^-26/ 2,75*10^-7=7,22 *10^-19

Кин. э ( она же макс энергия) = hc/L(дл. в) — Авых, получим 3,84*10^-19

Получим: КОРЕНЬ (2*3,84*10^-19/9.1 * 10^31) = 9,2*10^ 5 м/c

Другие вопросы из категории

количество теплоты выделится в каждом сопротивлении при полной разрядке конденсатора?

это по всем законам ньютона
прошу очень

Читайте также

Можно пожалуйста вместе с решением.:*
1. Найдите энергию фотона видимого света с длиной волны 600 нм.
2. Определите наибольшую кинетическую энергию фотоэлектрона, вылетевшего из лития, при освещении его светом с частотой 8*10 ( в 15 степени) Гц.
3. Наибольшая длина волны света, при которой наблюдается фотоэффект для калия, 6,2*10 (в -5 степени) см. Найти работу выхода электронов из калия.
4. Возникнет ли фотоэффект в цинке под действием облучения, имеющего длину волны 600 нм?
5. Определите максимальную кинетическую энергию фотоэлектрона лития при освещении его светом с длиной волны 200 нм.

Источник

Наибольшая длина волны света 0 275

Задача 542. Определить работу выхода А электронов из вольфрама, если «красная граница» граница фотоэффекта для него λ0=275 нм.

Задачи для самостоятельного решения:

задача 1. Калий освещается монохроматическим светом с длиной волны 400 нм. Определить наименьшее задерживающее напряжение, при котором фототок прекратится. Работа выхода электронов из калия равна 2,2 эВ. (Ответ: 0,91 В).

задача 2. Красная граница фотоэффекта для некоторого металла равна 500 нм. Определить: 1) работу выхода электронов из этого металла; 2) максимальную скорость электронов, вырываемых из этого металла светом с длиной волны 400 нм. (Ответ:1) 2,48 эВ; 2) 468 км/с).

Задача 3. Выбиваемые светом при фотоэффекте электроны при облучении фотокатода видимым светом полностью задерживаются обратным напряжением U0 = l,2 B. Специальные измерения показали, что длина волны падающего света λ = 400 нм. Определить красную границу фотоэффекта. (Ответ: 652 нм).

Задача 4. Задерживающее напряжение для платиновой пластинки (работа выхода 6,3 эВ) составляет 3,7 В. При тех же условиях для другой пластинки задерживающее напряжение равно 5,3 В. Определить работу выхода электронов из этой пластинки. (Ответ: 4,7 эВ).

Задача 5. Определить, до какого потенциала зарядится уединенный серебряный шарик при облучении его ультрафиолетовым светом длиной волны λ = 280 нм. Работа выхода электронов из серебра А = 4,7 эВ. (Ответ: 1,27 В).

Задача 6. При освещении вакуумного фотоэлемента монохроматическим светом с длиной волны λ1 = 0,4 мкм он заряжается до разности потенциалов φ1 = 2 В. Определить, до какой разности потенциалов зарядится фотоэлемент при освещении его монохроматическим светом с длиной волны λ2 = 0,3 мкм. (Ответ: 3,04 В).

Задача 7. Плоский серебряный электрод освещается монохроматическим излучением с длиной волны λ = 83 нм. Определить, на какое максимальное расстояние от поверхности электрода может удалиться фотоэлектрон, если вне электрода имеется задерживающее электрическое поле напряженностью Е = 10 В/см. Красная граница фотоэффекта для серебра λ0 = 264 нм.

Задача 8. Фотоны с энергией ε = 5 эВ вырывают фотоэлектроны из металла с работой выхода А = 4,7 эВ. Определить максимальный импульс, передаваемый поверхности этого металла при вылете электрона. (Ответ: 2,96.10-25 кг. м/с).

Задача 9. При освещении катода вакуумного фотоэлемента монохроматическим светом с длиной волны λ = 310 нм фототок прекращается при некотором задерживающем напряжении. При увеличении длины волны на 25 % задерживающее напряжение оказывается меньше на 0,8 В. Определить по этим экспериментальным данным постоянную Планка. (Ответ: 6.61.10-34 Дж.с).

Читайте также:  Имеют ли право отключать свет если нет газа

Источник

Длины световых волн

Свет играет важную роль в фотографии. Привычный всем солнечный свет имеет достаточно сложный спектральный состав.

Спектральный состав видимой части солнечного света характеризуется наличием монохроматических излучений, длина волны которых находится в пределах 400-720 нм, по другим данным 380-780 нм.

Иными словами солнечный свет может быть разложен на монохроматические составляющие. В тоже время монохроматические (или одноцветные) составляющие дневного света не могут быть выделены однозначно, а, ввиду непрерывности спектра, плавно переходят от одного цвета в другой.

Считается, что определённые цвета находятся в определённых пределах длин волн. Это иллюстрирует Таблица 1.

Длины световых волн

Название цвета

Длина волны, нм

Для фотографов представляет определённый интерес распределение длин волн по зонам спектра.

Всего выделяют три зоны спектра: Синюю (Blue), Зелёную (Green) и Красную (Red).

По первым буквам английских слов Red (красный), Green (зелёный), Blue (синий) получила название система представления цвета – RGB.

В RGB-системе работает множество устройств, связанных графической информацией, например, цифровые фотокамеры, дисплеи и т.п.

Длины волн монохроматических излучений, распределённых по зонам спектра, представлены в Таблице 2.

При работе с таблицами важно учесть непрерывный характер спектра. Именно непрерывный характер спектра приводит к расхождению, как ширины спектра видимого излучения, так и положение границ спектральных цветов.

Длины волн монохроматических излучений, распределённых по зонам спектра

Обозначение

Зона видимого спектра

Спектральные цвета

Длина волны, нм

Длина волны, нм

Сине-фиолетовый
Синий
Сине-зелёный

400-430
430-480
480-500

380-440
440-485
485-500

Зелёный
Жёлто-зелёный
Жёлтый

500-540
540-560
560-580

500-540
540-565
565-590

Что касается монохроматических цветов, то разные исследователи выделяют разное их количество! Принято считать от шести до восьми различных цветов спектра.

Шесть цветов спектра

Монохроматические цвета спектра

Длина волны, нм

При выделении семи цветов спектра предлагается из диапазона синего 436-495 нм см.Таблицу 3 выделить две составляющие, одна из которых имеет синий (440-485 нм), другая – голубой (485-500 нм) цвет.

Семь цветов спектра

Монохроматические цвета спектра

Источник

Самостоятельная работа по теме «Фотоэффект»

Данная работа может быть использована для контроля знаний по теме «Фотоэффект»

Просмотр содержимого документа
«Самостоятельная работа по теме «Фотоэффект»»

1. Определить красную границу фотоэффекта для платины.

2. Наибольшая длина волны света, при которой наблюдается фотоэффект для калия 6,2 ∙ 10 -5 см. Найти работу выхода электронов из калия.

3. Определить наибольшую скорость электрона, вылетевшего из цезия, при освещении его светом с длиной волны 400 нм.

4. Найти работу выхода электрона с поверхности некоторого материала, если при облучении этого материала желтым светом скорость выбитых электронов равна 0,28 ∙ 10 6 м/с. Длина волны желтого света равна 590 нм.

5. Какой кинетической энергией обладают электроны, вырванные с поверхности меди, при облучении ее светом с частотой 6 ∙ 10 16 Гц?

6. Какую максимальную кинетическую энергию имеют электроны, вырванные из оксида бария, при облучении светом частотой 1 ПГц?

7. Какой длины волны надо направить свет на поверхность цезия, чтобы максимальная скорость фотоэлектронов была 2 Мм/с?

8. Наибольшая длина волны света, при которой происходит фотоэффект для вольфрама, 0,275 мкм. Найти работу выхода электронов из вольфрама? наибольшую скорость электронов, вырываемых из вольфрама светом с длиной волны 0,18 мкм? наибольшую энергию этих электронов.

1. На металлическую пластину падает монохроматический свет длиной волны λ = 0,42 мкм. Фототок прекращается при задерживающем напряжении 0,95 В. Определить работу выхода электронов с поверхности пластины.

Читайте также:  От какого источника света образуется только тень предмета

2. При фотоэффекте с поверхности серебра задерживающий потенциал оказался равным 1,2 В. Вычислить частоту падающего света.

3. Рентгеновская трубка работает под напряжением 60 кВ. Определить максимальную энергию фотона рентгеновского излучения и максимальную длину волны этого излучения.

4. Если поочередно освещать поверхности металлов излучением с длинами волн 350 и 540 нм, то максимальные скорости фотоэлектронов будут отличаться в два раза. Определить работу выхода электрона для этого металла.

5. Красная граница фотоэффекта для металла 6,2 ∙ 10 -5 см. Найти величину запирающего напряжения для фотоэлектронов при освещении металла светом с длиной волны 330 нм.

6. К вакуумному фотоэлементу, у которого катод выполнен из цезия, приложено запирающее напряжение 2 В. При какой длине волны падающего на катод света появится фототок.

7. Какое запирающее напряжение надо подать, чтобы электроны, вырванные ультрафиолетовым светом с длиной волны 100 нм из вольфрамового катода, не могли создать ток в цепи?

8. Под каким напряжением работает рентгеновская трубка, если самые «жесткие» лучи в ее рентгеновском спектре имеют частоту ν = 10 19 Гц?

1. Найти длину волны, света, которым освещается поверхность металла, если фотоэлектроны имеют кинетическую энергию 4,5 ∙ 10 -16 Дж, а работа выхода электрона из металла равна 7,5 ∙ 10 -19 Дж.

2. Уединенный цинковый шарик облучают монохроматическим светом длиной волны 4 нм. До какого потенциала зарядится шарик? Работа выхода электрона из цинка равна 4,0 эВ.

3. Какая часть энергии фотона, вызывающего фотоэффект, расходуется на работу выхода, если небольшая скорость электронов, вырванных с поверхности цинка, составляет 10 6 м/с? Красная граница фотоэффекта для цинка соответствует длине волны 290 нм.

4. На поверхность металла падает поток излучения с длиной волны 0,36 мкм, мощность которого 5 мкВт. Определить силу фототока насыщения, если 5% всех падающих фотонов выбивают из металла электроны.

5. При освещении поверхности некоторого металла фиолетовым светом с длиной волны 0,40 мкм выбитые светом электроны полностью задерживаются запирающим напряжением 2,0 В. Чему равно запирающее напряжение при освещении того же металла красным светом с длиной волны 0,77 мкм?

6. Для измерения постоянной Планка катод вакуумного фотоэлемента освещается монохроматическим светом. При длине волны излучения 620 нм ток фотоэлектронов прекращается, если в цепь между катодом и анодом включить задерживающий потенциал не меньше определенного значения. При увеличении длины волны на 25% задерживающий потенциал оказывается на 0,4 В меньше. Определить по этим данным постоянную Планка.

1. 2,34 ∙ 10 -7 м. 2. 3,2 ∙ 10 -19 Дж. 3. 6,5 ∙ 10 5 м/с. 4. 3,02 ∙ 10 -19 Дж. 5. 3,93 ∙ 10 -17 Дж. 6. 3,14 эВ. 7. 94,4 нм. 8. 7,2 ∙ 10 -19 Дж; 9,1 ∙ 10 5 м/с; 3,8 ∙ 10 -19 Дж.

1. 2 эВ. 2. 1,43 ∙ 10 15 Гц. 3. 6,104 эВ; 2,1 ∙ 10 -11 м. 4. 2,84 ∙ 10 -19 Дж. 5. 1,76 В. 6. 330 нм. 7. 7,9 В. 8. 4,1 ∙ 10 4 В.

1. 250 нм. 2. 308,5 В. 3. 60%. 4. 7,27 ∙ 10 -18 А. 5. 0,51 В.

Источник

Квантовая природа излучения

201. Определите работу выхода A электронов из вольфрама, если «красная граница» фотоэффекта для него λ = 275 нм.

202. Калий освещается монохроматическим светом с длиной волны 400 нм. Определите наименьшее задерживающее напряжение, при котором фототок прекратится. Работа выхода электронов из калия равна 2,2 эВ.

Читайте также:  Скандинавский свет suzuki sx4

203. Красная граница фотоэффекта для некоторого металла равна 500 нм. Определите: 1) работу выхода электронов из этого металла; 2) максимальную скорость электронов, вырываемых из этого металла светом с длиной волны 400 нм.

204. Выбиваемые светом при фотоэффекте электроны при облучении фотокатода видимым светом полностью задерживаются обратным напряжением U = 1,2 В. Специальные измерения показали, что длина волны падающего света λ = 400 нм. Определите красную границу фотоэффекта.

205. Задерживающее напряжение для платиновой пластинки (работа выхода 6,3 эВ) составляет 3,7 В. При тех же условиях для другой пластинки задерживающее напряжение равно 5,3 В. Определите работу выхода электронов из этой пластинки.

206. Определите, до какого потенциала зарядится уединенный серебряный шарик при облучении его ультрафиолетовым светом длиной волны λ = 208 нм. Работа выхода электронов из серебра A = 4,7 эВ.

207. При освещении вакуумного фотоэлемента монохроматическим светом с длиной волны λ1 = 0,4 мкм он заряжается до разности потенциалов φ1 = 2 В. Определите, до какой разности потенциалов зарядится фотоэлемент при освещении его монохроматическим светом с длиной волны λ1 = 0,3 мкм.

208. Плоский серебряный электрод освещается монохроматическим излучением с длиной волны λ = 83 нм. Определите, на какое максимальное расстояние от поверхности электрода может удалиться фотоэлектрон, если вне электрода имеется задерживающее электрическое поле напряженностью E = 10 В/см. Красная граница фотоэффекта для серебра λ = 264 нм.

209. Фотоны с энергией ε = 5 эВ вырывают фотоэлектроны из металла с работой выхода A = 4,7 эВ. Определите максимальный импульс, передаваемый поверхности этого металла при вылете электрона.

210. При освещении катода вакуумного фотоэлемента монохроматическим светом с длиной волны λ = 310 нм фототок прекращается при некотором задерживающем напряжении. При увеличении длины волны на 25% задерживающее напряжение оказывается меньше на 0,8 В. Определите по этим экспериментальным данным постоянную Планка.

211. Определите максимальную скорость Vmax фотоэлектронов, вырываемых с поверхности цинка (работа выхода A = 4 эВ), при облучении у -излучением с длиной волны λ = 2,47 пм.

212. Определите для фотона с длиной волны λ = 0,5 мкм: 1) его энергию; 2) импульс; 3) массу.

213. Определите энергию фотона, при которой его эквивалентная масса равна массе покоя электрона. Ответ выразите в электрон-вольтах.

214. Определите, с какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона, длина волны которого λ = 0,5 мкм.

215. Определите длину волны фотона, импульс которого равен импульсу электрона, прошедшего разность потенциалов U = 9,8 В.

216. Определите температуру, при которой средняя энергия молекул трехатомного газа равна энергии фотонов, соответствующих излучению λ = 600 нм.

217. Определите, с какой скоростью должен двигаться электрон, чтобы его кинетическая энергия была равна энергии фотона, длина волны которого λ = 0,5 мкм.

218. Определите, с какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона, длина волны которого λ = 2 пм.

220. Давление монохроматического света с длиной волны λ = 500 нм на зачерненную поверхность, расположенную перпендикулярно падающим лучам, равно 0,12 мкПа. Определите число фотонов, падающих ежесекундно на 1 м 2 поверхности.

221. На идеально отражающую поверхность площадью S = 5 см 2 за время t = 3 мин нормально падает монохроматический свет, энергия которого W = 9 Дж. Определите: 1) облученность поверхности; 2) световое давление, оказываемое на поверхность.

Ошибка в тексте? Выдели её мышкой и нажми

Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!

Источник

Adblock
detector