Меню

Луч света через коллоидный раствор



Оптические свойства коллоидных растворов.

По оптическим свойствам коллоидные растворы существенно» отличаются от истинных растворов низкомолекулярных веществ, а также от грубодисперсных систем. Наиболее характерными оптическими свойствами коллоидно-дисперсных систем являются опалесценция, эффект Фарадея — Тиндаля и окраска. Все эти явления обусловлены рассеянием и поглощением света коллоидными частицами.

В зависимости от длины волны видимого света и относительных размеров частиц дисперсной фазы рассеяние света принимает различный характер. Если размер частиц превышает длину световых волн, то свет от них отражается по законам геометрической оптики. При этом часть светового излучения может проникать внутрь частиц, испытывать преломление, внутреннее отражение и поглощаться.

Если размер частиц меньше длины полуволны падающего света, наблюдается дифракционное рассеяние света; свет как бы обходит (огибает) встречающиеся на пути частицы. При этом имеет место частичное рассеяние в виде волн, расходящихся во все стороны. В результате рассеяния света каждая частица является источником новых, менее интенсивных волн, т. е. происходит как бы самосвечение каждой частицы. Явление рассеяния света мельчайшими частицами получило название опалесценции. Оно свойственно пре­имущественно золям (жидким и твердым), наблюдается только в отраженном свете, т. е. сбоку или на темном фоне. Выражается это явление в появлении некоторой мутноватости золя и в смене («переливах») его окраски по сравнению с окраской в проходящем свете. Окраска в отраженном свете, как правило, сдвинута в сторону большей частоты видимой части спектра. Так, белые золи (золь хлорида серебра, канифоли и др.) опалесцируют голубоватым цветом.

Эффект Фарадея — Тиндаля. Дифракционное рассеяние света впервые было замечено М. В. Ломоносовым. Позднее, в 1857 г., это явление наблюдал Фарадей в золях золота. Наиболее детально явление дифракции (опалесценции) для жидких и газовых сред было изучено Тиндалем (1868).

Если взять один стакан с раствором хлорида натрия, а другой — с гидрозолем яичного белка, трудно установить, где коллоидный раствор, а где истинный, так как на вид обе жидкости бесцветны и прозрачны (рис. 6.5). Однако эти растворы можно легко различить, проделав следующий опыт. Наденем на источник света (настольную лампу) светонепроницаемый футляр с отверстием, перед которым в целях получения более узкого и яркого пучка света поставим линзу. Если на пути луча света поставить оба стакана, в стакане с золем увидим световую дорожку (конус), в то время как в стакане с хлоридом натрия луч почти не заметен. По имени ученых, впервые наблюдавших это явление, светящийся конус в жидкости был назван конусом (или эффектом) Фарадея — Тиндаля. Этот эффект является характерным для всех коллоидных растворов.

Появление конуса Фарадея — Тиндаля объясняется явлением рассеяния света коллоидными частицами размером 0,1—0,001 мкм.

Длина волн видимой части спектра 0,76—0,38 мкм, поэтому каждая коллоидная частица рассеивает падающий на нее свет. Он виден в конусе Фарадея — Тиндаля, когда луч зрения направлен под углом к проходящему через золь лучу.Таким образом, эффект Фарадея — Тиндаля —явление, идентичное опалесценции, и отличается от последней только видом коллоидного состояния, т. е. микрогетерогенности системы.

Теория рассеяния света коллоидно-дисперсными системами была разработана Рэлеем в 1871 г. Она устанавливает зависимость интенсивности (количества энергии) рассеянного света (I) при опалесценции и в конусе Фарадея — Тиндаля от внешних и внутренних факторов. Математически эта зависимость выражается в виде формулы, получившей название формулы Рэлея:

6.1

где I — интенсивность рассеянного света в направлении, перпендикулярном к лучу падающего света; К — константа, зависящая от показателей преломления дисперсионной среды и дисперсной фазы; n — число частиц в единице объема золя; λ — длина волны падающего света; V — объем каждой частицы.

Из формулы (6.1) следует, что рассеяние света (I) пропорционально концентрации частиц, квадрату объема частицы (или для сферических частиц — шестой степени их радиуса) и обратно пропорционально четвертой степени длины волны падающего света. Таким образом, рассеяние коротких волн происходит относительно более интенсивно. Поэтому бесцветные золи в проходящем свете кажутся красноватыми, в рассеянном — голубыми.

Читайте также:  Боится ли карась света фонаря

Окраска коллоидных растворов.В результате избирательною поглощения света (абсорбции) в сочетании с дифракцией образуется та или иная окраска коллоидного раствора. Опыт показывает, что большинство коллоидных (особенно металлических) растворов ярко окрашено в самые разнообразные цвета, начиная от белого и кончая совершенно черным, со всеми оттенками цветового спектра. Так, золи As2S3 имеют ярко-желтый, Sb2S3 — оранжевый, Fe(OH)3 — красновато-корич­невый, золота — ярко-красный цвет и т. п.

Один и тот же золь имеет различную окраску в зависимости от того, в проходящем или отраженном свете она рассматривается. Золи одного и того же вещества в зависимости от способа приготовления могут приобретать различную окраску— явление полихромии (многоцветности). Окраска золей в данном случае зависит от степени дисперсности частиц. Так, грубодисперсные золи золота имеют синюю окраску, большей степени дисперсности — фиолетовую, а высокодисперсные — ярко – красную. Интересно отметить, что цвет металла в недисперсном со­стоянии не имеет ничего общего с его цветом в коллоидном состоянии.

Необходимо отметить, что интенсивность окраски золей в десятки (а то и в сотни) раз больше, чем молекулярных растворов. Так, желтая окраска золя As2S3 в слое толщиной в 1 см хорошо заметна при массовой концентрации 10 -3 г/л, а красный цвет золя золота заметен даже при концентрации 10 -5 г/л.

Красивая и яркая окраска многих драгоценных и полудрагоценных камней (рубинов, изумрудов, топазов, сапфиров) обусловлена содержанием в них ничтожных (не определимых даже на лучших аналитических весах) количеств примесей тяжелых металлов и их оксидов, находящихся в коллоидном состоянии. Так, для искусственного получения яркого рубинового стекла, употребляемого для автомобильных, велосипедных и прочих фонарей, достаточно на 1000 кг стеклянной массы добавить всего лишь 0,1 кг коллоидного золота.

Ультрамикроскоп. На явлении светорассеяния в конусе Фарадея — Тиндаля основан один из важнейших методов исследования высокодисперсных систем — с помощью ультрамикроскопа.

В отличие от обычного микроскопа в ультрамикроскопе применено боковое освещение. При этом свет от осветителя не попадает в объектив микроскопа и в глаз наблюдателя, поэтому фон поля зрения микроскопа темный.

Этим методом можно вычислить размер коллоидной частицы по формуле

Пусть d — плотность частиц, С — массовая концентрация коллоидного раствора, V — выде­ленный оптический объем; ν — число частиц в объеме V;

Принимая форму частицы за куб или сферу, можно вычислить раз­мер коллоидной частицы по формуле (6.2):

6.2

где D — диаметр сферической частицы

d — плотность частиц, С — массовая концентрация коллоидного раствора, V — выде­ленный оптический объем; ν — число частиц в объеме V;

Источник

2.4. Оптические свойства коллоидных систем
2.4.1. Рассеяние света в золях

Если коллоидные системы наблюдать в проходящем и боковом свете, то можно увидеть интересные явления: бесцветный золь в проходящем свете кажется прозрачным, а в боковом свете — мутным; луч света, проходя через золь, оставляет в нем светлую полосу. Это явление называется опалесценцией.

В 1869 г. Дж. Тиндаль установил, что если направить на золь пучок света, то внутри золя можно увидеть светящийся голубым светом конус. Стакан с золем должен быть затемнен, тогда конус виден особенно отчетливо. Схема опыта Тиндаля приведена на рис. 2.15.

При прохождении света через золь происходят следующие явления: поглощение (абсорбция) света, преломление света, отражение света, рассеяние света.

Читайте также:  Давление света определяется слабым взаимодействием

Явление опалесценции, конус Тиндаля — это следствие рассеяния света. Теорию этого явления разработал английский ученый Дж. У. Рэлей (1871 г.).

Если радиус частиц золя меньше длины полуволны падающего света (r 3 ); V – объем одной частицы; l – длина волны падающего света; n2, n1 – показатели преломления дисперсной фазы и дисперсионной среды.

Из уравнения Рэлея следует, что яркость опалесценции растет с уменьшением длины волны.

Голубое свечение обусловлено тем, что светорассеяние коротких волн (синих и фиолетовых) происходит интенсивнее, чем длинных (красных и желтых).

В проходящем свете относительное содержание лучей с короткой длиной волны будет уменьшаться, поэтому мутные среды, опалесцирующие голубым светом, в проходящем свете кажутся красноватыми или даже красными, если мутность достаточно сильна.

Интенсивность рассеянного света зависит от степени дисперсности. Наибольшее светорассеяние будет в коллоидных системах, меньше оно в грубодисперсных системах. В последних будет преобладать отражение, а не рассеяние света.

Для систем, содержащих частички металлов, проводящих электрический ток, все зависимости становятся гораздо сложнее. Яркость рассеянного света, на которую влияет длина волны, обычно проходит через максимум, характерный для данного типа частиц и определяется его индивидуальными оптическими постояннымими; кроме того, этот максимум является функцией степени дисперсности системы.

Рис. 2.16. Зависимость коэффициента объемного рассеяния света от размера частиц белого пигмента.

На рис. 2.16 приведен пример зависимости коэффициента рассеяния света от размера частиц. Видно, что зависимость интенсивности рассеянного света от дисперсности некоторых пигментов экстремальны и существует такой размер частиц rmax, при котором рассеяние наибольшее. Интересно отметить, что, например, белый пигмент при r rmax – желтоватый.

Следовательно, радиус частиц и их распределение по размерам определяют изменение оттенка или даже цвета пигмента в результате рассеяния различной части спектра. Поглощение света наряду с его рассеянием делает зависимость цвета дисперсии (в водной среде или в полимерной пленке) еще более сложной. Установлено, что максимум рассеяния света и размер частиц связаны уравнением

(2.2.104)

где l – длина волны падающего света; n1, n2 – коэффициенты преломления света дисперсионной средой и дисперсной фазой.

Используя это уравнение можно рассчитать необходимую степень дисперсности частиц пигмента, необходимую для максимального рассеяния света с заданной длиной волны l. Зависимость степени рассеяния света от размера частиц приводит к тому, что при диспергировании будет изменяться не только оттенок белого пигмента, но и кажущийся цвет окрашенного пигмента.

Уравнение Рэлея, также как и уравнение (2.2.104), справедливо только для систем с дисперсными частицами правильной сферической формы. Для систем с асимметричными частицами созданы теории, в которых рассеяние света связывают с углом его падения. Эти теории и соответствующие уравнения здесь мы не рассматриваем.

Источник

Рассеяние света коллоидными системами. Конус Тиндаля. Закон Релея и его анализ

3. Рассеяние света коллоидными системами. Конус Тиндаля. Закон Релея и его анализ

Тиндаль (1869г.) наблюдал образование светящегося конуса при пропускании пучка света через коллоидный раствор.

Светорассеивание наблюдается только тогда, когда длина световой волны больше размера частицы дисперсной фазы. Если длина световой волны много меньше диаметра частицы, происходит отражение света, проявляющиеся в мутности, заметной визуально.

Все коллоидные растворы способны рассеивать свет (опалесцировать). Опалесценция становится особенно заметной, если через раствор пропускать пучок сходящихся лучей, поставив между источником света и кюветой с раствором линзу. При этих условиях в коллоидном растворе, наблюдаемом сбоку, виден ярко светящийся конус (конус Тиндаля).

Релей вывел уравнение, связывающее интенсивность падающего света с интенсивностью света, рассеянного единицей объема системы .

,

где — показатели преломления дисперсной фазы и дисперсной среды;

— численная концентрация;

— объем одной частицы;

— длина световой волны.

Уравнение Релея применимо для частиц, размер которых составляет не более 0,1 длины световой волны. Для частиц большего размера изменяется обратно пропорционально не четвертой, а меньшей степени .

Читайте также:  Включение света по домашнему

Когда частицы становятся настолько велики, что их размер значительно превышает , светорассеивание переходит в отражение света, не зависящее от длины световой волны.

Из уравнения Релея можно сделать следующие выводы:

· Для частиц данного размера интенсивность рассеянного света прямо пропорциональна концентрации золя.

· Интенсивность рассеянного света пропорциональна квадрату объема частицы или для сферических частиц шестой степени их радиуса.

· При опалесценции под действием белого света при боковом освещении бесцветные коллоидные системы обнаруживают синеватую окраску.

· Опалесценция золей интенсивнее, чем растворов ВМС из-за большей плотности.

· Опалесценция истинных растворов весьма незначительна, т.к. вследствие малого объема частиц выражение в численном уравнение Релея очень велико.

4. Оптические методы исследования: нефелометрия, ультрамикроскопия, турбидиметрия, электронная микроскопия

В нефелометрии измеряется интенсивность света, рассеянного дисперсной системой. Вместо измерения абсолютных значений рассеянного света на практике проводят сравнение интенсивностей лучей, рассеянных стандартным и исследуемым золем. На рис. 2,а приведена схема визуального нефелометра Кляйнмана (нефелометры иногда называют тиндалеметрами). При измерении подниманием или опусканием экранов изменяют высоту осветленной части пробирок с золями, добиваясь одинаковой осветленности в обеих половинах окуляра. При подчинении исследуемой монодисперсной системы уравнению Рэлея для интенсивности рассеянного света можно записать

Рис.2 Схема нефелометра -а Схема турбидиметра — б

а — 1 – зеркала, 2 – кюветы, 3 – призмы, 4 – окуляр.

б — 1 – пробирки с золями, 2 — экраны, 3 –призмы, 4 – окуляр

В турбидиметрии измеряют интенсивность света, прошедшего через стандартную и исследуемую дисперсную систему. Схема визуального турбидиметра приведена на рис. 2,б. Оптическая плотность раствора пропорциональна концентрации и объему частиц дисперсной фазы

При одинаковой осветленности поля зрения в окуляре имеем равенство cстандVстанд = cхVх, применение, которого аналогично рассмотренному для нефелометрии.

Ультрамикроскопия и электронная микроскопия.

Коллоидные частицы нельзя наблюдать в обычном микроскопе, так как их размеры меньше разрешающей способности микроскопа. Для средней части видимой области спектра можно достигнуть разрешающей способности не выше, чем 0,2 мкм. Ультрафиолетовый свет, специальная кварцевая оптика и фотографическая регистрация позволяют увеличить разрешающую способность и довести ее до 0,1 мкм, что является верхней границей коллоидной дисперсности. Р. Зидентопф и Р. Зигмонди в 1903 г. предложили так называемый ультрамикроскопический метод исследования коллоидных систем. Они применили сильное боковое освещение наблюдаемого под микроскопом раствора таким образом, чтобы свет не попадал в объектив микроскопа. При этом коллоидные частицы были видны как отдельные светлые точки, что позволяет установить их присутствие в растворе и наблюдать за их движением.

При ультрамикроскопическом наблюдении можно судить о том, в какой степени коллоидные частицы сферически симметричны. Свет, рассеиваемый сферическими частицами, имеет постоянную интенсивность при их движении в растворе. Если частицы не сферичны, а имеют, например, палочкообразную или пластинчатую форму, то при движении они мерцают.

В электронной микроскопии используется поток быстрых электронов с длиной волны до 10-9 м, что дает очень высокое разрешение, соответствующее увеличению до 105. Метод дает сведения о размерах и форме частиц, макромолекул и надмолекулярных образований. Электронная микроскопия существенно дополняет ультрамикроскопию. Электронный микроскоп позволяет увидеть мельчайшие частички и многие особенности их строения, но необходимость работы в высоком вакууме требует удаления жидкой дисперсионной среды.

III. Раздел «Структурно – механические свойства дисперсных систем»

1. Структурирование в коллоидных и полимерных системах. Гели и студни. Их свойства, механизм образования и практическое значение. Тиксотропия и синтерезис

Согласно А.И. Рабинерсону и Г.И. Фуксу, структуры, образующиеся в высокодисперсных системах, можно классифицировать по их плотности:

Источник