Меню

Как замедляется время при скорости света



Влияет ли скорость света на старение?

Феномен замедления времени в космосе долгое время волновал умы писателей-фантастов со всего мира. Вместе с тем, вопрос о том, как сильно воздействует перемещение астронавта со скоростью света на его биологические часы, впервые был описан в так называемом “парадоксе близнецов”, в котором астронавт совершает путешествие в космос на скоростной ракете, а его брат-близнец остается на Земле. Считается, что по возвращению на голубую планету, астронавт обнаружит своего близнеца постаревшим, в то время как внешний вид самого космического путешественника останется едва ли не прежним.

Скорость света может оказывать сильное влияние на процессы старения, происходящие в организме астронавтов

Почему скорость света замедляет время?

Замедление времени восходит к специальной теории относительности Эйнштейна, которая учит нас, что движение в пространстве на самом деле создает изменения в потоке времени. Чем быстрее вы движетесь сквозь три измерения, которые определяют физическое пространство, тем медленнее вы движетесь через четвертое измерение, которое, по сути, представляет собой время. Время в таком случае измеряется по-разному для астронавта и его близнеца, который оставался на Земле. Часы в движении будут тикать медленнее, чем часы, которые мы наблюдаем на Земле. Вместе с тем, если астронавт будет двигаться со скоростью, близкой к скорости света, эффект будет гораздо более выраженным.

Согласно статье, опубликованной на портале technologyreview.com, замедление времени не является мысленным экспериментом или гипотетической концепцией — оно реально. Эксперименты Хафеле-Китинга, проведенные в далеком 1971 году, доказали уникальную возможность практически полностью остановить время в тот момент, когда двое атомных часов находились на самолетах, летящих в противоположных направлениях. Относительное движение оказало измеримое влияние, создав некоторую разницу во времени между двумя часами. Подобное явление также было подтверждено в других физических экспериментах (например, быстро движущиеся мюонные частицы подвержены более долгому распаду, чем все остальные).

Ричард Китинг и Джозеф Хафеле, доказавшие возможность замедления времени

В современной науке считается, что именно на “релятивистских скоростях”, которые обычно начинаются от одной десятой скорости света, так или иначе проявляются эффекты относительности. В таком случае, астронавт, возвращающийся домой из космического путешествия, по возвращении будет выглядеть значительно моложе своих друзей и представителей семьи того же возраста, которые остались на Земле. Вопрос о том, насколько именно моложе он он будет выглядеть, будет прямо зависеть от скорости космического корабля.

Вместе с тем, существует еще один момент, который стоит упомянуть: время может замедляться не только из-за влияния скорости света, но и в результате воздействия на него некоторых гравитационных эффектов. Возможно, вы видели фильм Кристофера Нолана «Интерстеллар», в котором показано, что близость черной дыры способна буквально растягивать время на другой планете, превращая один проведенный час на планете Миллер в эквивалент семи земных лет.

Подобная форма замедления времени также реальна, что доказывается в общей теории относительности Эйнштейна. Гравитация в таком случае может значительно искривлять материю пространства-времени, заставляя часы, расположенные ближе к источнику гравитации, подвергаться гораздо более медленному течению времени, чем обычно. Астронавт, оказавшийся в непосредственной близости от черной дыры, постареет гораздо позже, чем его брат-близнец, решивший остаться дома. Подобная ситуация, пожалуй, может стать отличным сценарием для нового голливудского блокбастера.

Источник

Относительность 3 — Замедление времени, сокращение расстояний

Принцип относительности приводит к постоянству скорости света вне зависимости от направления или скорости движения наблюдателя. Как мы видели в предыдущем видео универсальное и единое для всех понятие одновременности событий приходится отбросить. А вместе с ним как мы сейчас увидим и постулат о едином для всех времени.

Рассмотрим так называемые световые часы. Луч света движется между двумя зеркалами. Какое-то количество переотражений луча между зеркалами соответствует одной секунде. За единицу времени Δt можно принять время прохождения луча от одного зеркала к другому.

В системе отсчета связанной с часами они неподвижны и пройденное светом расстояние есть просто cΔt.

В системе отсчета в которой световые часы движутся со скоростью v, луч идет по гипотенузе и проходит расстояние cΔt’. Штрихом будем обозначать эту вторую систему отсчета. Δt’ не может быть равен Δt поскольку скорость света с всегда одинаковая, а пройденное расстояние разное.

Расстояние между зеркалами можно найти через теорему Пифагора. Δt’ получается равным следующему выражению. Поскольку расстояние между зеркалами L это просто cΔt получаем связь интервалов времени разных систем отсчета.

Читайте также:  Как луч света проходит через воду

Интервал времени Δt’ в движущейся системе более длинный. За одну секунду в движущейся системе пройдет более одной секунды в неподвижной. То есть время в движущейся системе отсчета замедляется.

Не следует думать, что замедление времени — это кажущийся эффект или он применим только для таких экзотических световых часов. Время можно измерять по-разному. Любые другие часы или физические процессы можно сопоставить с такими световыми часами. Они не лучше и не хуже скажем механических часов. Замедляются все физические процессы.

Скорость находится как расстояние, деленное на время. Скорость света одинакова во всех системах координат, а время, как мы выяснили, течет по-разному. Поэтому при замедлении времени, расстояние должно сокращаться на тот же самый множитель, чтобы скорость света не изменилась.

Это можно продемонстрировать перевернув световые часы на 90 градусов, чтобы луч шел параллельно направлению движения.

По пути к зеркалу луч проходит расстояние L плюс то расстояние, на которое успело сдвинуться зеркало.

По пути обратно луч проходит расстояние L минус то расстояние, на которое успело приблизиться первое зеркало.

Общее время равно их сумме:

Сравнивая с предыдущим случаем для вертикально расположенных часов мы видим, что выражения различны. Горизонтальные и вертикальные часы идут по-разному. Такого не должно быть. От того что мы перевернули часы их показания не должны измениться. Устранить это можно только предположив, что само расстояние между зеркалами сократилось.

Множитель 2 появился из-за того, что мы в данном случае рассматривали вдвое больший путь луча – к зеркалу и обратно.

Все расстояния по направлению движения сокращаются:

Поскольку фундаментальной величиной является скорость света, а расстояния и интервалы времени вычисляются через нее и оказываются разными в разных системах отсчета, их лучше представлять себе просто как координаты.

При смене системы отсчета просто происходит переход от одной системы координат к другой. Как именно это происходит мы поговорим в следующем видео.

Важно то, что наблюдаемые явления не зависят от выбора системы координат или системы отсчета в нашем случае. Один и тот же эффект объясняется разными способами в разных системах отсчета. Классическим примером служат мюоны, рождаемые при столкновении космических лучей с верхними слоями атмосферы. Они летят по направлению к Земле со скоростью, близкой к скорости света. Но поскольку их время жизни равна всего 2 микросекундам, даже при такой высокой скорости они должны были бы распасться не достигнув поверхности. Но они наблюдаются и на поверхности. С нашей точки зрения это объясняется тем, что их время замедляется. Но с точки зрения самих частиц эффект объясняется сокращением проходимого ими расстояния от верхних слоев атмосферы до поверхности.

В электромагнетизме можно найти аналогичные примеры, когда один и тот же эффект объясняется в одной системе отсчета магнитными явлениями, а в другой электрическими. Так происходит потому, что электродинамика Максвелла уже совместима с теорией относительности.

Также нет ничего удивительного в том, что если из первой системы наблюдается замедление времени и сокращения расстояний у второй, то из этой второй системы наблюдаются такие же эффекты у первой.

Все инерциальные системы отсчета равноправны. Нельзя полагать, что кто-то один из них прав, а другой нет. Математика теории относительности гарантирует, что вы не получите никаких наблюдаемых парадоксов и логических нестыковок, если будете следовать правилам.

Ну и напоследок приведем график изменения релятивистского множителя с корнем как функцию скорости. Его обычно обозначают буквой гамма. Видим, что значительное отличие от единицы происходит только при достижении скорости в половину скорости света. При приближении к скорости света множитель резко возрастает и в асимптотике стремится к бесконечности.

При скоростях менее десятой от скорости света его можно приближенно считать единицей. А это все-таки по привычным нам меркам большие скорости – 30 000 км/с. Никто из людей никогда не двигался даже со скоростями в 1/1000 от этой одной десятой скорости света. Сегодняшним рекордом пилотируемых космических кораблей является скорость 40 000 км/ч, что составляет всего лишь 11км/с. Вторая космическая скорость до которой разгонялись астронавты при полете к Луне.

Сравните 11км/с и 300 000км/с. Именно поэтому у нас напрочь отсутствует интуиция касательно релятивистских эффектов и теории относительности вообще.

Источник

Замедление времени при скорости света

Скорость света в вакууме — это фундаментальная постоянная, не зависящая от выбора системы отсчёта.

В современную эпоху люди разработали несколько действительно быстрых устройств. У нас есть невероятно быстрые самолеты, сверхбыстрые истребители, скоростные пассажирские железнодорожные экспрессы и так далее. Тем не менее, во вселенной есть нечто, что движется быстрее всего того, что мы можем создать – это свет.

Читайте также:  С каким светом ехать с ближним или дальним

Возможно, некоторые из вас задумывались – а каково это было бы путешествовать со скоростью света?

И что происходит, когда мы путешествуем со скоростью света? Краткий ответ таков: например, человек, путешествующий с такой скоростью, испытывает замедление времени. Для этого человека время будет двигаться медленнее, чем для того, кто не движется.

До 1900-х годов мир твердо верил в взгляд Исаака Ньютона с точки зрения объектов и гравитации. Однако в 20 веке Альберт Эйнштейн навсегда изменил этот мир.

Теория относительности, выдвинутая Эйнштейном, прояснила многие сомнения относительно массы и энергии. Уравнение эквивалентности массы и энергии доказало, что масса и энергия взаимопревращаемы, а это означает, что масса может быть преобразована в энергию и наоборот.

Он предположил, что нет стандартной системы отсчета. Все относительно – даже время. Исходя из этого, был сделан вывод, что скорость света постоянна и не зависит от наблюдателя. Следовательно, если человек движется со скоростью, равной половине скорости света, в том же направлении, что и сам свет, то луч света для него будет выглядеть так же, как и для неподвижного человека.

Что означает эквивалентность массы-энергии?

Это означает, что если объект движется со скоростью, которая составляет 10% от скорости света, то он будет испытывать увеличение своей массы на 0,5% от его первоначальной массы. С другой стороны, если объект путешествовал бы со скоростью 90% скорости света, тогда его масса была бы в 2 раза больше его первоначальной массы.

Скорость света “С” (имеется в виду скорость света в вакууме) — это фундаментальная постоянная, не зависящая от выбора системы отсчёта. Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом. А теперь ответим на некоторые вопросы.

Можем ли мы путешествовать со скоростью света?

Нет, к сожалению мы не можем путешествовать со скоростью света.

Видите ли, если объект движется со скоростью света, его масса будет расти в геометрической прогрессии! Подумайте об этом – скорость света составляет около 299 792 километров в секунду (1.079.252.848,8 км. в час) и когда объект движется с такой скоростью, его масса становится бесконечной.

Поэтому для перемещения объекта потребуется бесконечная энергия, что невозможно. Вот почему ни один материальный объект не может двигаться со световой скоростью или со скоростью, превышающей скорость света.

Сколько понадобиться времени, чтобы преодолеть расстояние в один световой год? (световой год – это расстояние, которое свет проходит в вакууме за один год, около 10 триллионов километров).

На световой скорости: один год
На половине скорости света: два года
Корабли Breakthrough Starshot, что будут путешествовать со скоростью 0,2с:

5 лет
На скорости самого быстрого за всю историю человека искусственного объекта (Гелиос 2,):

4.269 лет
При скорости атома водорода в ядре Солнца:

15.500 лет
На максимальной скорости ракеты Saturn V, которая доставила человека на Луну:

108.867 лет
На скорости самого быстрого самолета в мире:

305.975 лет
На скорости звука:

882327 лет
На скорости автомобиля по шоссе:

8.388.270 лет
При скорости ходьбы :

215.993.799 лет
В темпе улитки:

Сколько времени займет путешествие на расстояние одного светового года со скоростью в одну десятую скорости света?

Логично предположить, что путешественнику понадобиться десять лет.

Однако, странные вещи могут случаться, когда вы путешествуете со скоростью, близкой к скорости света.

Допустим, космонавт находится на космическом корабле, движущемся со скоростью в одну десятую скорости света, и он покидает Землю и летит на какую-то гипотетическую планету на расстоянии одного светового года.

Наблюдатель остается на Земле и смотрит, как путешествует космонавт. И действительно, с точки зрения наблюдателя, космонавту понадобится десять лет, чтобы добраться до этой планеты. Но поскольку путешественник движется с субсветовой скоростью, время течет медленнее для него, чем для наблюдателя.

То есть каждый раз, когда часы на Земле отсчитывают минуту, на космическом корабле часы проходят чуть меньше одной минуты.

Читайте также:  Замена лампочки дневного света опель астра

Это означает, что с точки зрения путешественника (на космическом корабле) понадобится менее десяти лет, чтобы добраться до пункта назначения!

Разница в этом случае довольно мала: она составляет около 99,4% из десяти лет. Это означает, что космический полет окажется примерно на двадцать дней короче, чем для наблюдателя на Земле.

Существует уравнение для расчета замедления времени с учетом относительной скорости объекта:

Где Δ?0 – временной интервал путешественника (называемый собственным временем), Δ? ′ – временной интервал Земли, ? – скорость путешественника (на который ссылается Земля), а ? – скорость света.

Для повседневных скоростей (например, скорости самолета) ? мала, поэтому эффекты замедления времени незначительны. Но если мы двигаемся со скоростью больше чем 1/10 скорости света, мы начинаем видеть заметные эффекты.

Что если мы будем двигаться почти со скоростью света?
Если мы говорим о скорости, почти равной скорости света, скажем, 90% скорости света, то будут весьма интересные наблюдения.

С одной стороны, человек, путешествующий с такой скоростью, испытает замедление времени. Для этого человека время будет идти медленнее, чем для того, кто не движется.

Например, если человек путешествует в космосе со 90% скорости света, то для этого человека будут проходить только 10 минут времени, в то время как для наблюдателя на Земле пройдет 20 минут. Время будет сокращено вдвое!

Кроме того, поле зрения космического путешественника резко изменится. Мир предстанет перед ним через окно в форме туннеля перед космическим кораблем, в котором он путешествует. Кроме того, звезды впереди будут казаться голубыми, а звезды позади – красными.

Это связано с тем, что световые волны от звезд перед кораблем будут собираться вместе, в результате чего объекты будут казаться синими, а световые волны от звезд за кораблем будут расходиться и выглядеть красными, вызывая экстремальный эффект Доплера.

После определенной скорости космический путешественник увидит только черноту, потому что длина волны света, попадающего на его глаза, будет вне видимого спектра.

Но эффект замедления времени усиливается, если двигаться все быстрее и быстрее. Скажем, космический корабль летит со скоростью 99,999999% от скорости света – тогда, с точки зрения наблюдателя на Земле, космонавт в основном движется со скоростью света, и ему понадобится один год, чтобы добраться до планеты, расположенной на расстоянии одного светового года.

Но с точки зрения космонавта, такое путешествие займет только чуть более часа! Этот эффект называется релятивистским замедлением времени, и он связан со многими другими странными вещами, которые происходят, когда объекты движутся с релятивистскими скоростями (то есть со скоростями, близкими к скорости света).

Эти понятия замедления времени и специальной теории относительности особенно интересны для размышления. Например, если в один прекрасный день у нас развивается скорость, близкая к скорости света, мы можем двигаться «вперед» во времени относительно Земли.

Космонавт может путешествовать в течение нескольких месяцев или лет на своем космическом корабле и вернуться на Землю, чтобы обнаружить, что все остальные постарели на десятилетия или столетия!

Другая возможность состоит в том, что те путешественники, которые исследуют глубокие просторы космоса, смогут перемещаться на большие расстояния, не состарившись, и все благодаря замедлению времени. Вы сами можете посчитать, как зависит течение времени от скорости:

Калькулятор показывает замедление времени для космического путешественника по сравнению с наблюдателем с Земли, где временной интервал – это время, прошедшее на земле, скорость ракеты – это скорость космического корабля и космонавта, а относительное время – это время, которое прошло для космонавта на космическом корабле. Считать можно как в одну, так и в другую стороны.

На калькуляторе вы сможете видеть, что для того, чтобы разница в двух временных интервалах была заметной, скорость путешественника (скорость ракеты) должна быть чрезвычайно высокой – того же порядка, что и скорость света (299792.4 км/с).

Вот почему релятивистские эффекты настолько противоречивы: мы не можем испытать их в повседневной жизни и не замечаем их.

Конечно, эти эффекты реальны и измеримы. Часы на спутниках идут немного медленнее, чем на поверхности Земли. Как только мы сможем путешествовать со скоростью, достаточно близкой к скорости света – например, при 0,8 С – мы также увидим релятивистский эффект.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник