Меню

Как свет нагревает тела



Тепловое излучение тел

Испускаемый источником свет уносит с собой энергию. Существует много различных механизмов подвода энергии к источнику света. В тех случаях, когда необходимая энергия сообщается нагреванием, т. е. подводом тепла, излучение называется тепловым или температурным. Этот вид излучения для физиков конца XIX века представлял особый интерес, так как в отличие от всех других видов люминесценции, тепловое излучение может находиться в состоянии термодинамического равновесия с нагретыми телами.

Изучая закономерности теплового излучения тел, физики надеялись установить взаимосвязь между термодинамикой и оптикой.

Если в замкнутую полость с зеркально отражающими стенками поместить несколько тел, нагретых до различной температуры, то, как показывает опыт, такая система с течением времени приходит в состояние теплового равновесия, при котором все тела приобретают одинаковую температуру. Тела обмениваются энергией только путем испускания и поглощения лучистой энергии. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в среднем компенсируют друг друга, и в пространстве между телами плотность энергии излучения достигает определенного значения, зависящего только от установившейся температуры тел. Это излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или черным излучением. Плотность энергии равновесного излучения и его спектральный состав зависят только от температуры.

Если через малое отверстие заглянуть внутрь полости, в которой установилось термодинамическое равновесие между излучением и нагретыми телами, то глаз не различит очертаний тел и зафиксирует лишь однородное свечение всей полости в целом.

Пусть одно из тел в полости обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Такое тело называют абсолютно черным. При заданной температуре собственное тепловое излучение абсолютно черного тела, находящегося в состоянии теплового равновесия с излучением, должно иметь тот же спектральный состав, что и окружающее это тело равновесное излучение. В противном случае равновесие между абсолютно черным телом и окружающем его излучением не могло бы установиться. Поэтому задача сводится к изучению спектрального состава излучения абсолютно черного тела. Решить эту задачу классическая физика оказалась не в состоянии.

Для установления равновесия в полости необходимо, чтобы каждое тело испускало ровно столько лучистой энергии, сколько оно поглощает. Это одна из важнейших закономерностей теплового излучения. Отсюда следует, что при заданной температуре абсолютно черное тело испускает с поверхности единичной площади в единицу времени больше лучистой энергии, чем любое другое тело.

Модель абсолютно черного тела

Абсолютно черных тел в природе не бывает. Хорошей моделью такого тела является небольшое отверстие в замкнутой полости (рис. 5.1.1). Свет, падающий через отверстие внутрь полости, после многочисленных отражений будет практически полностью поглощен стенками, и снаружи отверстие будет казаться совершенно черным. Но если полость нагрета до определенной температуры T, и внутри установилось тепловое равновесие, то собственное излучение полости, выходящее через отверстие, будет излучением абсолютно черного тела. Именно таким образом во всех экспериментах по исследованию теплового излучения моделируется абсолютно черное тело.

С увеличением температуры внутри полости будет возрастать энергия выходящего из отверстия излучения и изменяться его спектральный состав.

Распределение энергии по длинам волн в излучении абсолютно черного тела при заданной температуре T характеризуется излучательной способностью r (λ, T), равной мощности излучения с единицы поверхности тела в единичном интервале длин волн. Произведение r (λ, T) Δλ равно мощности излучения, испускаемого единичной площадкой поверхности по всем направлениям в интервале Δλ длин волн. Аналогично можно ввести распределение энергии по частотам r (ν, T). Функцию r (λ, T) (или r (ν, T)) часто называют спектральной светимостью, а полный поток R (T) излучения всех длин волн, равный

называют интегральной светимостью тела.

К концу XIX века излучение абсолютно черного тела было хорошо изучено экспериментально.

В 1879 году Йозеф Стефан на основе анализа экспериментальных данных пришел к заключению, что интегральная светимость R (T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T:

Несколько позднее, в 1884 году, Людвиг Больцман вывел эту зависимость теоретически, исходя из термодинамических соображений. Этот закон получил название закона Стефана–Больцмана. Числовое значение постоянной σ, по современным измерениям, составляет

σ = 5,671·10 –8 Вт / (м 2 · К 4 ).

Спектральное распределение r (λ, T) излучения черного тела при различных температурах

К концу 90-х годов XIX века были выполнены тщательные экспериментальные измерения спектрального распределения излучения абсолютно черного тела, которые показали, что при каждом значении температуры T зависимость r (λ, T) имеет ярко выраженный максимум (рис. 5.1.2). С увеличением температуры максимум смещается в область коротких длин волн, причем произведение температуры T на длину волны λm, соответствующую максимуму, остается постоянным:

Читайте также:  Светодиодные фары рабочего света китай

Это соотношение ранее было получено Вином из термодинамики. Оно выражает так называемый закон смещения Вина: длина волны λm, на которую приходится максимум энергии излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре T. Значение постоянной Вина

При практически достижимых в лабораторных условиях температурах максимум излучательной способности r (λ, T) лежит в инфракрасной области. Только при T ≥ 5·10 3 К максимум попадает в видимую область спектра. Максимум энергии излучения Солнца приходится примерно на 470 нм (зеленая область спектра), что соответствует температуре наружных слоев Солнца около 6200 К (если рассматривать Солнце как абсолютно черное тело).

Успехи термодинамики, позволившие вывести законы Стефана–Больцмана и Вина теоретически, вселяли надежду, что, исходя из термодинамических соображений, удастся получить всю кривую спектрального распределения излучения черного тела r(λ, T). В 1900 году эту проблему пытался решить знаменитый английский физик Д. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия. Эта теорема была применена Релеем к равновесному излучению в полости. Несколько позже эту идею подробно развил Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от длины волны λ и температуры T:

Это соотношение называют формулой Релея–Джинса. Оно согласуется с экспериментальными данными только в области достаточно длинных волн (рис. 5.1.3.). Кроме того, из нее следует абсурдный вывод о том, что интегральная светимость R (T) черного тела должна обращаться в бесконечность, а, следовательно, равновесие между нагретым телом и излучением в замкнутой полости может установиться только при абсолютном нуле температуры.

Сравнение закона распределения энергии по длинам волн r (λ, T) в излучении абсолютно черного тела с формулой Релея–Джинса при T = 1600 К

Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена М. Планком на основе новой идеи, чуждой классической физике.

Планк пришел к выводу, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:

E = hν,

где h – так называемая постоянная Планка. h = 6,626·10 –34 Дж·с. Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.

На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.

Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.

Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При hν Опубликовано в разделах: Квантовая физика

Источник

Каким образом свет преобразовывается в тепловую энергию, попадая на какое-то тело, что случается с фотонами?

Свет — это электромагнитная волна определенной энергии. Когда она попадает на некоторое тело, то поглощается электронами этого тела. Фактически, это означает, что энергия электрона увеличивается на энергию фотона. Фотон, грубо говоря, исчез, а электрон перешел на более высокую по энергии орбиталь. Для электрона это называется переход в возбужденное состояние. В большинстве случаев долго находиться в этом состоянии он не может (не буду объяснять почему, долго). У него есть грубо два пути избавиться от лишней энергии — излучательный (люминесценция, то есть обратно выделить квант света той же или несколько меньшей длины волны) и безызлучательный (то есть как-то «раздать» эту энергию внутри тела). Нагревание тела — это один из самых распространенных механизмов безызлучательной релаксации возбужденного состояния. Дело в том, что колебания (кристаллической решетки или молекулы) тоже обладают какой-то характеристической частотой (частотами). Эти частоты по энергии заметно ниже, чем энергия кванта светового излучения, то есть если у нас есть один возбужденный электрон, то он может два, три, пять раз «колебнуть» своей «лишней» энергией решетку или молекулу. Ну, это условно говоря. Точнее сказать, что энергия возбужденного состояния электрона передается на решеточные колебания или колебания молекулы. А температура тела — это и есть, собственно, колебания решетки или молекул этого тела.

Читайте также:  Эфиопия какая часть света

Для газов всё то же самое, только вместо «колебания молекул» будет «движение молекул».

Источник

Тепловое излучение — механизм возникновения, характеристики и законы

Общие сведения

В начале XIX века английский астроном и оптик Вильям Гершель, используя призму, наблюдал преломление солнечного света. В итоге он смог обнаружить, что тела при повышении температуры обладают излучением.

Лежало оно за пределами красной части спектра и получило название инфракрасное. Этот вид, как оказалось, в дальнейшем, был связан с природой колебаний атомов в кристаллической решётке и стал синонимом тепловому излучению.

Гершель установил, что инфракрасный свет подчиняется всем известным законам оптики. Через более чем сто лет советская учёная Глаголева-Аркадьева смогла получить опытным путём радиоволны, лежащие в области излучения совпадающим с тепловым. Это позволило заключить, что инфракрасный поток является разновидностью электромагнитной волны.

Условно тепловое излучение разделяют на три группы:

  • коротковолновое — длина волны лежит в пределах от 0,74 мкм до 2,5 мкм;
  • средневолновое — диапазон излучения находится в промежутке от 2,5 мкм до 50 мкм;
  • длинноволновое — занимает участок электромагнитных волн от 60 мкм до 10 мкм.

Как оказалось, инфракрасные лучи создаёт и тело человека. Но тепловое излучение оно может не только излучать, но и воспринимать. Оптик Харди предположил, что человек способен излучать в области характерной для абсолютно чёрного тела. Причём длина волны не зависит от возраста и других особенностей строения человеческого организма. Поэтому коэффициент излучения кожи приняли равным единице. Но практические исследования показали, что различия всё же есть. Оно несущественное и зависит от окружающей обстановки. Так, при температуре помещения 22 °C излучение уже нельзя отнести к коротковолновому.

Инфракрасный спектр наблюдается в вакууме. Его испускание можно обнаружить у нагретого металла, в земной атмосфере, на поверхности белого карлика. Оказалось, что излучение разных тел отличается не только длиной волны, но и интенсивностью. Но при этом наступает такой момент, когда физический объект находится в состоянии термодинамического равновесия. В этот момент неизменной остаётся не только температура, но и давление, объём, энтропия. Такое состояние часто называют равновесным. По сути, оно соответствует излучению спектра абсолютно чёрного тела и описывается формулой Планка.

Природа явления

Любое излучение не может существовать само по себе. Для его появления необходим источник. Испускаемое им излучение уносит энергию, которая после может принимать любой вид. Изучая закономерности тепловых лучей, учёные пытались установить связь между ними и световыми волнами. Простой опыт показывал, что если нагретое тело поместить в замкнутое пространство с зеркальными стенами, то через время все поверхности станут одинаковой температуры. Наступит тепловое равновесие.

После того как было изучено строение тел, открыты элементарные частицы и кристаллическая решётка, стало ясно, что любое твёрдое тело является излучателем электромагнитной волны. Обусловлено оно тем, что свободные частицы в равновесном состоянии обладают именно энергией, полученной за счёт тепловых колебаний. При этом обусловлено оно возбуждением атомов и молекул при соударениях.

Возбуждение частиц происходит за счёт того, что частицы, находящиеся на более высоком энергетическом уровне, сталкиваясь с молекулами, отдают им часть своей энергии. Но так как любая система всегда стремится занять энергетически наиболее выгодное состояние, то возбуждённые носители зарядов стремятся вернуться в предыдущее состояние, испуская при этом электромагнитную волну.

Естественно, теплоизлучение — это интенсивный процесс, но при этом зависящий от окружающих источник температур. Установлено, что вне зависимости от возникновения величина излучения снижается с уменьшением температуры. При достижении абсолютного нуля движение частиц прекращается. Следовательно, электромагнитная волна телом не генерируется, но в то же время оно остаётся способным поглощать энергию извне.

В зависимости от механизма тепловые колебания описываются следующим характеристиками:

  1. Мощность. Показывает количество энергии, которое способно испустить тело за единицу времени: F = Δ W / Δ t.
  2. Светимость. Определяет величину энергии, которую тело может излучать за одну секунду с поверхности равной одному квадратному метру: R = F / S.
  3. Спектральной плотностью. Описывает, по какому закону происходит распределение энергии по спектру: r = dR / dj .
  4. Коэффициент монохромного поглощения. Находится как отношение поглощённого потока к падающему на тело в единичном интервале длин волн: j = Fпог / F пад.

Тело, у которого j = 1 как раз и называется абсолютно чёрным. Но в природе таких объектов нет. Вещества коэффициент поглощения которых не зависит от частоты являются серыми. У них j

Излучение реальных тел

Все тела, температура которых превышает ноль по кельвину излучают электромагнитные волны. Происходит это за счёт внутренней энергии. Опыты показали, что в реальных телах наибольшее значение излучаемой энергии соответствует определённой длине волны. Эта зависимость хорошо описывается законом Вина. В 1893 году немецкий учёный смог построить экспериментальные кривые излучения тела для различных температур.

Читайте также:  Вакансии чистый свет шереметьево

В его графике по оси абсцисс были отложены длины волн, а ординат — испускаемая энергия. Оказалось, что при температуре 3 тыс. K максимум пришёлся на длину волны порядка 1,2 мкм. Если же тело нагревать, то пик будет смещаться в сторону коротких волн. Так, для 5 тыс. K он составит 0,7 мкм. Это излучение уже становится видимым для человеческого глаза. При 6 тыс. K излучение сместится в жёлтую часть спектра и примерно составит 500 нм.

Полученные данные были систематизированы. В итоге учёный вывел формулу: J = b / T. Где:

  • b — постоянная Вина (2,9 * 10 -3 m * K);
  • T — абсолютная температура тела.

Она нашла широкое практическое применение. Например, стало возможным узнать, сколько микрометров будет составлять излучение, исходящее от человека. Она равняется 9,35 мкм. Это действительно инфракрасное невидимое излучение. Знание этой величины даёт возможность использовать специальные приборы, позволяющие фиксировать отклонения теплового излучения.

В медицине с их помощью исследуют кровь, пульс. Кроме того, оказывая воздействие правильно подобранным нетепловым излучением на кожные рецепторы улучшают кровообращение, процессы метаболизма.

Зная каков механизм потери тепла излучением и пик длины волны можно создать лазер, эффективный измеритель температуры — пирометр. С помощью последнего возможно провести интересный эксперимент. Можно взять стальную пластину шероховатую, с одной стороны, а с другой — отшлифованную. Если её нагреть до 100 0 С, а потом замерить температуру пирометром, то можно увидеть, что результат измерения будет у разных сторон различаться. На шероховатой стороне количество излучаемой энергии выше. Объясняется этот эффект поверхностной плотностью, то есть поглощающей способностью.

Закон Стефана — Больцмана

Над энергией излучения чёрного тела в своё время задумались два физика Джозеф Стефан и Людвиг Больцман. Они смогли вывести формулу, которая описывала, как с увеличением температуры возрастает излучаемая энергия. На их законе основан принцип работы тепловизора. Это устройство с экраном, на который выводится изображение изучаемой поверхности тела. При этом в зависимости от мощности излучения участки тела имеют разный цвет. Так, наименьшая отображается синими тонами и соответствует холодным участкам. Наибольшая — красным цветом (нагретые места).

Формула, полученная физиками, выглядит так: R = σ * T 4 . Где:

  • T — Абсолютная температура в кельвинах [K];
  • σ — постоянная Стефана — Больцмана равная 5,67 * 10 -8 Вт / (м 2 * К);
  • R — энергетическая светимость тела измеряемая в ваттах делённых на квадратный метр [Вт /м 2 ].

С помощью этой формулы, зная температуру тела, например, лампы накаливания, можно рассчитать, сколько энергии будет излучаться в пространство. Интересным фактом является то, что если предмет нагреть в два раза, то его тепловое испускание возрастёт в 16 раз. По сути, формула позволяет представить, какую энергию будет излучать в единицу времени тело площадью один квадратный метр. Другими словами, узнать отдаваемую мощность.

Таким образом, закон Стефана — Больцмана представляет зависимость интенсивности излучения, а формула Вина определяет частоту испускаемой волны. Инфракрасное испускание — это основной механизм передачи тепла происходящий с помощью лучистой энергии. Его часто называют тепловой радиацией облучения.

Тепловые лучи распространяются подобно световым лучам. Они передают энергию как излучение, а также проходят в безвоздушном пространстве. Например, тепловое излучение Земли состоит из баланса энергий процессов теплопередачи, излучения в атмосфере и на поверхности планеты. Основной приток энергии обеспечивают солнечные лучи, распространяющиеся в диапазоне от 0,1 до 4 мкм.

Способность тепловосприятия зависит от вида поверхности. Так, тела с тёмной и шероховатой нагреваются сильнее, чем светлые и гладкие тела. Они поглощают большую часть теплового излучения. В качестве примеров можно привести, нагрев тёмных волос, одежды солнечным светом. Но при этом, тёмные тела излучают и больше тепла по сравнению со светлыми.

Источник

Adblock
detector