Меню

Как сделать реакцию со светом



Добавление эффектов освещения

На этой странице

某些 Creative Cloud 应用程序、服务和功能在中国不可用。

Применение фильтра «Эффекты освещения»

Фильтр «Эффекты освещения» позволяет создавать в RGB-изображениях различные эффекты освещения. Предусмотрена также возможность применять для создания объемных эффектов текстуры, полученные из файлов изображений в градациях серого (они называются карты рельефа), а также сохранять собственные стили для использования в других изображениях.

Фильтр Эффекты освещения в Photoshop работает только на 8-битных RGB-изображениях. Для использования эффектов освещения у вас должна быть поддерживаемая видеокарта. Дополнительную информацию см. в разделе Часто задаваемые вопросы.

В меню «Наборы» в верхнем левом углу выберите стиль.

В окне просмотра выберите отдельные источники света, которые необходимо настроить. Затем на верхней половине панели свойств выполните одно из следующих действий.

  • В верхнем меню выберите тип источника (направленный, бесконечный или точечный).
  • Настройте цвет, интенсивность и размер центра освещенности.

На нижней половине панели свойств настройте весь набор источников света с помощью следующих параметров:

Щелкните, чтобы придать оттенок всему освещению.

Управляет сведениями о светлых и темных участках.

Определяет, сколько поверхностей отражают свет.

Определяет, какой цвет в большей степени присутствует в отраженном свете: цвет падающего света или цвет объекта, на который он падает.

Рассеивает свет, как если бы он смешивался с другим (солнечным или флуоресцентным) светом в помещении. Чтобы использовать только источник освещения, выберите значение 100, а чтобы его удалить, выберите значение –100.

Советы экспертов: руководства по эффектам освещения

Быстро освойте специальную рабочую среду эффектов освещения. В этом руководстве от Дэна Мугамяна (Dan Moughamian) содержится пошаговое описание действий.

Также см. обзорное видео Эффекты освещения, подготовленное Мэттом Клосковски (Matt Kloskowski).

Типы эффектов освещения

Предусмотрена возможность выбора из нескольких типов источников освещения.

Освещение во всех направлениях непосредственно над изображением, как лампочка.

Освещение всей плоскости, как солнце.

Излучает пучок света эллиптической формы. Линия в окне просмотра определяет направление и угол света, а рукояти — края эллипса.

Настройка точечного света в окне просмотра

В верхнем меню панели свойств выберите пункт «Точечный».

В окне просмотра настройте источник света.

  • Чтобы переместить источник света, перетащите его в любое место холста.
  • Чтобы изменить распространение света (отражающее приближение или удаление источника света), перетащите белый раздел кольца интенсивности в центре.

При значении интенсивности, равном 100, достигается самая яркая освещенность, нормальная освещенность составляет около 50, при отрицательных значениях интенсивности источник света отдаляется, а при значении –100 освещенность отсутствует.

Настройка бесконечного света в окне просмотра

В верхнем меню панели свойств выберите пункт «Бесконечный».

  • Чтобы изменить направление, перетаскивайте маркер, находящийся в конце линии.
  • Чтобы изменить яркость, перетащите белый раздел кольца интенсивности в центре элементов управления светом.

Настройка направленного света в окне просмотра

В верхней части панели свойств выберите «Направленный».

В окне просмотра настройте источник света.

  • Чтобы переместить источник света, выполните перетаскивание в пределах внешнего эллипса.
  • Чтобы повернуть источник света, выполните перетаскивание за пределами внешнего эллипса.
  • Чтобы изменить угол центра освещенности, перетащите край внутреннего эллипса.
  • Чтобы растянуть или сжать эллипс, перетащите один из четырех внешних маркеров.
  • Чтобы изменить область эллипса, заполненную светом, перетащите белый раздел кольца интенсивности в центре.

Наборы эффектов освещения

Меню «Наборы» в рабочей среде «Эффекты освещения» позволяет выбрать один из 17 стилей освещения. Предусмотрена также возможность создать собственные наборы, задав дополнительные источники света в параметре «По умолчанию». Фильтр «Эффекты освещения» требует применения по крайней мере одного источника освещения. В один момент времени допускается редактирование характеристик только одного источника освещения, но для создания эффекта используются и все дополнительно введенные.

Прожектор на 2 часа

Желтый прожектор со средней (17) интенсивностью и широкой (91) фокусировкой.

Синяя верхняя лампа с полной (85) интенсивностью и без фокусировки.

Четыре прожектора. Белый имеет полную (100) интенсивность и концентрированную (8) фокусировку. Желтый имеет сильную интенсивность (88) и концентрированную (3) фокусировку. Красный имеет среднюю (50) интенсивность и концентрированную (0) фокусировку. Синий имеет полную (100) интенсивность и среднюю (25) фокусировку.

Белый прожектор со средней (35) интенсивностью и широкой (69) фокусировкой.

Два белых прожектора со средней (35) интенсивностью и широкой (100) фокусировкой.

Белый прожектор средней интенсивности (35) с широкой фокусировкой (69).

Пять прожекторов вниз/пять прожекторов вверх

Пять прожекторов, направленных вниз или вверх, с полной (100) интенсивностью и широкой (60) фокусировкой.

Желтая лампочка со средней (46) интенсивностью.

Белый прожектор со средней (35) интенсивностью и широкой (69) фокусировкой.

Направленный синий дневной свет с полной (98) интенсивностью и без фокусировки.

Источники света RGB

Красный, синий и зеленый источники света, которые излучают свет со средней (60) интенсивностью и широкой (96) фокусировкой.

Мягкий направленный свет

Два направленных источника света, белый и синий, без фокусировки. Белый источник света имеет слабую (20) интенсивность. Синий источник света имеет среднюю (67) интенсивность.

Мягкая лампочка со средней (50) интенсивностью.

Белый прожектор с полной (98) интенсивностью и широкой (100) фокусировкой.

Три белых прожектора со слабой (35) интенсивностью и широкой (96) фокусировкой.

Три прожектора с небольшой (35) интенсивностью и широкой (100) фокусировкой.

Источник

Как сделать светящуюся жидкость и другие фокусы

Если вас завораживают предметы светящиеся в темноте, то вам будет интересно узнать, как можно сделать разные жидкости и вещи сияющими. Особенно рады будут дети и подростки, но нужно внимательно следовать инструкциям, чтобы все получилось.

Что такое флуоресцент?

Как сделать светящуюся жидкость

Для начала стоит отметить, что создание светящейся жидкости в домашних условиях это не легкий процесс. Он так же не является очень чистым, а значит, придется, как следует мыть посуду после его изготовления.

Читайте также:  Закон прямолинейного распространения света при образовании тени

Очевидно, что если жидкость светится, значит, в ней происходят определенные химические процессы.

Но сильно углубляться в химию не стоит. Для дополнения можно сказать, что некоторые вещества, находясь в кислой среде, могут излучать свет.

Для нужной нам химической реакции, стоит приготовить необходимые реагенты.

Также стоит отметить, что существуют несколько способов изготовления светящейся жидкости.

Как сделать светящуюся воду

— люминол (его можно найти в магазинах, специализирующихся на химреактивах) — 2-3 г

— перекись водорода 3% (можно найти в аптеке) — 80 мл

— медный купорос — 3 г

— раствор едкого натра — 10 мл

— флуоресцентные красители, такие как, например рубрен или бриллиантовый зеленый

— прозрачная стеклянная емкость

Люминол является порошком желтого цвета. Если насыпать его в кислые и нейтральные растворы, он начнет светиться голубым цветом. Именно он является главным ингредиентом в данном эксперименте.

1. Налейте в стеклянную емкость воду и растворите в ней люминол.

2. Добавьте в емкость перекись водорода.

3. Добавьте медный купорос (можно его заменить хлорным железом или красной кровяной солью).

* В случае, если у вас нет ни одного и трех ингредиентов, можете использовать подручные средства. Выдавите из куриного окорока немного крови и разведите ее в воде, после чего добавьте 1 ст. ложку данного раствора к смеси в емкости.

4. Добавьте едкий натр.

Теперь можете выключить свет и любоваться голубым свечением из емкости.

* В случае, если вам хочется другой цвет, кроме голубого, можете добавить в раствор любой флуоресцентный краситель.

— сухая щелочь (КОН) — 35 г

— димексид — 30 мл

— стеклянная емкость с пробкой — 500 мл

1. Смешайте в емкости люминол, щелочь и димексид.

2. Закройте емкость крышкой и взболтайте. У вас должно получиться голубое свечение. Его вы можете перекрасить, с помощью любого флуоресцентного красителя.

* В случае, если свечение ослабло, откройте крышку, чтобы набрать в емкость воздуха. После этого жидкость снова станет излучать свет.

— один высокий стакан

— раствор стирального порошка — 20 мл

— перекись водорода 3% — 10 мл

— раствор люминола 3% — 5 мл

— немного кристаллов марганцовки

1. Приготовьте в стакане раствор стирального порошка.

2. Добавьте перекись водорода.

3. Добавьте раствор люминола.

4. Разотрите несколько кристаллов марганцовки и добавьте их в ту же емкость.

* Если начать перемешивать смесь, она начнет пениться, и будет искриться.

* Так как вода в кране хлорированная, под ее воздействием раствор люминола будет светиться.

Как сделать светящуюся жидкость (видео)

* Светится под ультрафиолетовым светом

Как сделать светящиеся шнурки

Если два варианта изготовления светящихся шнурков.

Стоит отметить, что светящийся шнурок состоит из маленького электронного блока, в который встроен светодиод. Последний размещен в мягком шнурке, который изготовлен из силикона, и который способен пропускать свет. Энергию светодиод берет от батарейки.

Цвет светящихся шнурков вы выбираете сами. Светящиеся шнурки функционируют в 3-х режимах. Они имеют переключатель, находящийся на электронном блоке.

* Стандартная длина шнурков 80см.

* Светиться без подзарядки шнурки будут примерно 70 часов. Далее просто замените батарейку.

* Запомните, что светящиеся шнурки являются всего лишь аксессуаром, а значит их не стоит использовать для плотной шнуровки. Они не предназначены для такой специализированной обуви, как беговые кроссовки или футбольные бутсы (бампы).

Как сделать светящуюся краску

Главным ингредиентом светящейся краски, сделанной в домашних условиях, является тот же люминофор.

Приобрести люминофор, как уже было сказано, можно в специальных магазинах, или через интернет. Он представляет собой порошкообразное вещество, которое преобразовывает энергию в свечение.

Вам понадобится (на 1 кг краски):

-250 гр. люминофора

Просто смешайте все ингредиенты.

Стоит отметить, что такая краска не будет светиться так же долго как и та, что продается в магазинах. И не забывайте «подзаряжать» солнечным светом вашу краску.

Используя светящуюся краску, мы можете нарисовать картину в комнате или раскрасить любой предмет. Вы также можете нанести рисунок на майку.

Как сделать светящуюся клавиатуру

Можно пойти длинной и сложной дорогой и использовать 9-Вольтовый светодиодный шнур вот так:


Но можно все сделать намного проще.

Просто воспользуйтесь светящей краской. Существует специальная спрей-краска, которую можно найти в авто магазинах.

Такая краска надолго запасается энергией Солнца или искусственного освещения, и в темноте светится.

Сначала покрасьте клавиатуру такой краской, и потом наклейте на клавиши буквы (их можно купить в любом компьютерном салоне или магазине электроники).

Такая клавиатура будет светиться бледно-зеленым цветом, но вы можете поискать и другие оттенки краски.

Источник

Как сделать реакцию со светом

Еще в античные временя мастера красильного производства знали, что некоторые краски на прямом солнечном свету обесцвечиваются – выцветают. В средние века алхимики знали, что соли серебра чернеют со временем, но это связывали с действием воздуха. Лишь в 1727 Иоганн Генрих Шульце установил, что почернение хлорида серебра происходит под действием света. В 1802 немецкий физик Иоганн Риттер исследовал химическое действие различных участков светового спектра. Используя призму, он установил, что почернение хлорида серебра возрастает при переходе от красного к фиолетовому концу спектра и становится максимальным за его пределами. Таким образом в солнечном спектре было обнаружено новое излучение, которое получило название ультрафиолетового. Эти исследования были особенно важны для разработки фотографических процессов.

В 1818 прибалтийский физик и химик Теодор Гротгус сформулировал один из основных законов фотохимии: химическое действие может произвести только свет, который поглощается реагирующими молекулами. Например, водород не поглощает видимый свет, а хлор поглощает только фиолетовые и синие лучи. Поэтому красный свет не может вызвать реакцию в смеси водорода с хлором. К такому же выводу пришел независимо американский ученый Джон Уильям Дрепер. Этот первый фотохимический закон получил название закона Гротгуса – Дрепера.

Читайте также:  Когда наступит конец света как это будет

После поглощения кванта света в молекуле могут происходить разнообразные процессы. В начале 20 в. Альбертом Эйнштейном и немецким физиком Иоганном Штарком был сформулирован второй закон фотохимии. В соответствии с этим законом, первичный фотохимический акт происходит под действием одного кванта света – фотона. Поэтому этот закон называют также законом квантовой эквивалентности. (После открытия лазеров было обнаружено, что у этого закона есть исключения: в случае очень мощного лазерного излучения возможно одновременное поглощение двух фотонов.)

Второй закон фотохимии служит основой для расчета квантового выхода фотохимической реакции, который равен числу прореагировавших (или вновь образовавшихся) молекул, деленному на число поглощенных квантов. Квантовый выход, определяемый экспериментально, позволяет судить о механизме фотохимической реакции.

Молекула, поглотившая в первичном процессе квант света, приобретает избыточную энергию, поэтому такую молекулу называют возбужденной. В отличие от теплового воздействия, когда возбуждаются колебательные движения молекулы и возрастает ее кинетическая энергия, при поглощении фотона энергия передается электронам. С электронно возбужденной молекулой могут происходить самые разнообразные процессы. Некоторые из них не связаны с химическими превращениями и называются фотофизическими процессами. Так, возбужденное состояние может за очень короткое время (порядка 10 –9 с) вернуться в основное состояние, отдавая избыточную энергию в виде кванта света (как правило, с меньшей энергией). Этот процесс называется флуоресценцией. Если же в результате столкновения возбужденной молекулы с другими молекулами происходит передача избыточной энергии, то интенсивность флуоресценции снижается – частично или полностью. Такие процессы с потерей энергии называются тушением флуоресценции. Возбужденное состояние может также перейти в более долгоживущее (от 0,001 с до нескольких минут) триплетное состояние, энергия которого ниже. Испускание света из этого состояния называется фосфоресценцией.

Возбужденная светом молекула может также вступать в различные химические реакции. Свойства электронно возбужденного состояния могут сильно отличаться от свойств основного состояния молекулы. Так как у каждой молекулы существует лишь одно основное, но несколько возбужденных состояний, фотохимия данного соединения может быть существенно богаче его химии в основном состоянии. В результате появляется возможность осуществлять необычные химические превращения, не свойственные веществам в основном состоянии.

Если после поглощения фотона преобладают фотофизические процессы, число химически прореагировавших молекул, приходящихся на один поглощенный квант, то есть квантовый выход реакции, будет меньше единицы. Например, при облучении красным светом водного раствора ферриоксалата калия (комплекса трехвалентного железа с анионом щавелевой кислоты – оксалатом состава К 3[Fe(C2O4)3 ]) квантовый выход фотохимической реакции 2Fe(C 2O4)3 3– ® 2Fe 2+ + 5C2O4 2– + 2CO2 равен всего 0,01, но возрастает с увеличением энергии кванта света. Еще меньшие квантовые выходы наблюдаются при фотохимическом разложении (фотолизе) твердых тел. Например, даже на ярком солнечном свету полимерные пленки разрушаются довольно медленно, в течение многих недель, месяцев и даже лет.

В большинстве фотохимических реакций получаемая молекулой энергия превышает типичные энергии активации темновых (термических) реакций и может даже превосходить энергию разрыва химических связей. Тем не менее многие фотохимические реакции отличаются высокой избирательностью, что связано с особенностями электронного строения возбужденного состояния.

Рассмотрим некоторые фотохимические реакции. В результате реакции фотодиссоциации происходит разрыв химических связей с образованием свободных радикалов ( См. также СВОБОДНЫЕ РАДИКАЛЫ ). Примером могут служить реакции Cl 2 ® 2Cl; CH3I ® CH3 + I; CH3–N=N–CH3 ® 2CH3 + N2 и другие. Образующиеся атомы и радикалы обладают высокой реакционной способностью и вступают в быстрые темновые реакции, часто цепные. В результате квантовый выход суммарной реакции может стать значительно больше единицы. Так, при облучении смеси Cl 2 + H2 квантовый выход HCl может достигать сотен тысяч. Фотохимическое радикально-цепное присоединение сероводорода к алкенам используется для синтеза меркаптанов – соединений с сильным запахом, которые добавляют к природному газу для обнаружения его утечки. Очень важны реакции фотодиссоциации молекул кислорода и озона, идущие в верхних слоях атмосферы. С помощью реакций фотодиссоциации можно осуществлять различные процессы радикальной полимеризации. Подобные процессы применяются в производстве интегральных схем; с помощью фоторезистов на кремниевой подложке обозначаются участки, на которых в последующем образуются элементы будущей микросхемы. В зубоврачебной технике фотополимеризация используется для отверждения современных пломбировочных материалов.

Реакция фотодиссоциации используется в промышленно важном процессе получения e -капролактама – исходного вещества для производства капрона. Облучению видимым светом подвергают нитрозилхлорид, который при этом распадается: NOCl + h238 ® NO + Cl. Далее атомы хлора реагируют с циклогексаном: цикло -С 6 Н 12 + Cl ® цикло -С 6 Н 11 + НСl, а циклогексильные радикалы реагируют с NO или NOCl: цикло -С 6 Н 11 + NO (NOCl) ® цикло -С 6 Н 11NO ® цикло -С 6 Н 10 =N–OH. Образовавшийся при изомеризации нитрозоциклогексана циклогексанонооксим далее превращается в e -капролактам.

Фотохимический разрыв С–С-связи в стероидном соединении 7-дегидрохолестерине используется для синтеза витамина D 3 , который добавляют в корма животных. В сходной фотохимической реакции из эргостерина получают витамин D 2 ; эта реакция протекает под действием солнечного света и в коже человека.

Реакции фотодиссоциации с разрывом химических связей могут идти в разнообразных полимерных материалах под действием видимого или ультрафиолетового света. Образующиеся при этом радикалы могут приводить к разрыву связей С–С в углеродных цепочках полимера. Эти процессы приводят к так называемой фотодеструкции полимеров, которые ускоряются под действием агрессивных компонентов атмосферы – кислорода, озона, оксида азота(IV). В результате ухудшаются механические свойства полимера. Они особенно заметны на полиэтиленовой пленке парника, которая в течение многих месяцев подвергалась действию прямых солнечных лучей. Поэтому очень важны меры по фотостабилизации полимеров; ее можно осуществить введением ингибиторов радикальных реакций. С другой стороны, для упаковочных полимерных материалов, наоборот, желательно быстрое их разрушение после использования, чтобы избежать загрязнения этими полимерами окружающей среды. Такие полимеры намеренно делают светочувствительными; под действием солнечных лучей они рассыпаются в тонкий порошок.

Читайте также:  Что значит выражение ближний свет

Возбужденные светом молекулы могут также вступать в реакции переноса электрона – фотоокисление и фотовосстановление. Так, возбужденные карбонильные соединения в присутствии восстановителя могут превращаться в спирты, а возбужденные молекулы красителей, реагируя с кислородом, превращаются в бесцветные соединения. На фотовосстановлении солей железа(III) органическими реагентами (щавелевая или лимонная кислота) основаны методы светокопирования чертежей: образующиеся при фотовосстановлении Fe 3+ ионы Fe 2+ , реагируя с красной кровяной солью, дают синий осадок См. также ЛАЗУРЬ БЕРЛИНСКАЯ.

Под действием света могут идти реакции фотоприсоединения. Так, при возбуждении молекул с двойной связью возможен ее разрыв с образованием бирадикала, например, Н 2 С=СН 2 ® Н 2 С . – . СН 2 . Присоединение к нему второй молекулы этилена дает циклобутан. Такое циклоприсоединение с участием двух молекул алкенов происходит только под действием ультрафиолетового света; при нагревании эта реакция не идет, поскольку она запрещена так называемым правилом Вудворда – Хоффмана. В карбонильных соединениях с двойной связью С=О также возможен ее частичный разрыв с образованием реакционноспособного бирадикала. К нему может присоединиться молекула алкена с образованием четырехчленного циклического соединения – оксетана. Оксетановый цикл входит в состав некоторых антибиотиков; подобные соединения часто могут быть получены только фотохимически.

Особую группу составляют реакции фотосенсибилизации, в которых возбужденные светом атомы или молекулы передают избыточную энергию другим молекулам, которые и реагируют. Например, атомы ртути в парах возбуждаются ультрафиолетовым светом с длиной волны 253,7 нм. Если в системе присутствует метан (он не поглощает свет с длиной волны больше 170 нм), то происходит его диссоциация СН 4 ® СН 3 + Н в результате передачи энергии от возбужденных атомов ртути на молекулы метана. Интересно, что прямой фотолиз метана коротковолновым ультрафиолетом дает другие продукты: СН 4 ® СН 2 + Н 2. Перенос энергии от возбужденных молекул красителей – основа процессов, делающих фотографические материалы чувствительными к зеленым, желтым и красным лучам спектра. Путем фотосенсибилизации красителем из «обычного» кислорода получают возбужденный – синглетный кислород О 2 * со спаренными спинами. Такой кислород обладает повышенной реакционной способностью; его присоединение к двойной связи дает гидропероксиды: R 2 С=СHR + O 2* ® R2 C–CR–OOH. Эта реакция применяется в парфюмерной промышленности для получения некоторых душистых веществ.

Под действием света идут также разнообразные реакции фотоизомеризации. Например, транс -стильбен (1,2-дифенилэтилен) под действием света превращается в цис -стильбен. Цис-транс-изомеризация ретиналя (вещества, родственного ретинолу – витамину А) под действием света приводит в результате ряда последующих процессов к возникновению зрительного сигнала в сетчатке глаза.

Фотохимическим хлорированием бензола получают инсектицид гексахлорциклогексан. Фтотохимическим хлорированием, сульфохлорированием (одновременная реакция с SO 2 и Cl 2 ) и сульфоокислением алканов получают растворители, моющие средства и средства для химической чистки. Большое практическое значение имеют фотохимические реакции в зеленых растениях ( фотосинтез ).

Обратимые превращения веществ под действием света в ряде случаев приводят к интересному явлению – фотохромизму. Оно заключается в приобретении или изменении окраски под действием света. Обратная реакция может идти как в темноте, так и под действием света с другой длиной волны. Скорости прямой и обратной реакции могут быть различными. Часто прямая фотохимическая реакция идет сравнительно быстро, а обратная темновая – медленно. Фотохромизм наблюдается как у неорганических, так и у органических соединений. Механизм явления может быть разным. В случае кристаллических соединений действие света может сводиться к перемещению электронов или атомов из одних узлов кристаллической решетки в другие. Так, светозащитное фотохромное стекло содержит около 0,5% хлорида или бромида серебра, сплавленного с боросиликатами щелочных металлов. Под действием света происходит перенос электронов от ионов галогена к ионам серебра; образовавшиеся атомы серебра делают стекло непрозрачным. Обратная реакция может идти под действием света с другой длиной волны или в темноте. Такое стекло используется для изготовления солнечных очков, окон зданий и автомобилей; оно само регулирует пропускаемый световой поток, делая его оптимальным.

Кроме галогенидов серебра, фотохромными свойствами (в присутствии различных добавок) обладают также некоторые соли щелочных металлов – титанаты, силикаты, фосфаты. Смесь кристаллического иодида ртути(I) зеленого цвета и желтого иодида серебра представляет пример фотохромной системы, в которой изменение цвета сопровождается окислительно-восстановительной реакцией и изменением кристаллической структуры; в результате образуются красный иодид ртути(II) и черный порошок серебра: Hg 2I2 + 2AgI ® 2HgI2 + 2Ag.

Фотохромизм органических соединений связан, как правило, с изменением структуры молекулы. Фотохромная изомеризация характерна для многих ароматических нитросоединений. Например, в о-нитротолуоле при облучении происходит внутримолекулярный перенос протона, в результате которого светло-желтая жидкость переходит в ярко-синюю R2CH–NO2 R2 С=N + (O – )–OH.

Фотохромизм находит практическое применение. Помимо упоминавшихся фотохромных галогенсеребряных стекол, для изготовления иллюминаторов самолетов используют пластиковые стекла, содержащие фотохромный краситель, который темнеет на ярком солнечном свету, а при слабом освещении восстанавливает свою прозрачность. Если в прозрачную пластмассу ввести всего 0,1% гексакарбонила хрома Cr(CO) 6 , то при облучении бесцветное вещество окрашивается в интенсивный желтый цвет в результате отщепления одной молекулы СО. В темноте при комнатной температуре примерно в течение 4 ч происходит обратная рекомбинация СО и Cr(СО) 5 , и цвет исчезает. Изобретены даже «загорающие» куклы, при изготовлении которых применяют краситель, дающий обратимо коричневую окраску на солнечном свету. Недостатком всех известных фотохромных материалов, прежде всего органических, является их постепенное разрушение под действием тепла и света с утратой фотохромных свойств после определенного числа циклов.

Введение в фотохимию органических соединений . Л., «Химия», 1976
Уэйн Р. Основы и применение фотохимии . М., «Мир», 1991

Источник