Меню

Как призма разлагает свет



Как призма разлагает свет

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты.

Дисперсия света представляется в виде зависимости:

или .

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

.

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы. Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим, что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

Читайте также:  Dominations какое чудо света лучше строить

· Составные цвета в дифракционном и призматическом спектрах располагаются различно. Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества, показывает, как быстро меняется показатель преломления с длиной волны.

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной. Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией. Рассмотрим подробнее эти виды дисперсии.

Источник

Дисперсия света. Разложение белого света призмой

Дисперсия света – зависимость показателя преломления n вещества от частоты f (длины волны ) света или зависимость фазовой скорости световых волн от частоты. Следствие дисперсии света — разложение в спектр пучка белого света при прохождении сквозь призму. Изучение этого спектра привело И. Ньютона (1672) к открытию дисперсии света. Для веществ, прозрачных в данной области спектра, n увеличивается с увеличением f (уменьшением ), чему и соответствует распределение цветов в спектре, такая зависимость n от f называется нормальной дисперсией света. Опыт по разложению белого света в спектр: Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму.

Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.

Опыт по прохождению монохроматического света через призму: Ньютон на пути солнечного луча поставил красное стекло, за которым получил монохроматический свет (красный), далее призму и наблюдал на экране только красное пятно от луча света.

Читайте также:  Кого родила пермякова света

Опыт по синтезу (получению) белого света:

Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия.

— призма не меняет свет, а только разлагает его на составляющие

— световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные

— красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый — наименьшую, поэтому призма и разлагает свет.

Зависимость показателя преломления света от его цвета называется дисперсией.

— призма разлагает свет

— белый свет является сложным (составным)

— фиолетовые лучи преломляются сильнее красных.

Цвет луча света определяется его частотой колебаний.

При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной.

Непрерывные спектры – дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. (К ним относятся солнечный спектр или спектр дугового фонаря).

Линейчатые спектры – дают все вещества в газообразном атомарном (но не молекулярном) состоянии. (Обычно для наблюдения этих спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом).

Полосатые спектры – состоят из отдельных полос разделенных темными промежутками. Создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. (Для наблюдения используют свечение паров в пламени или свечение газового разряда).

Спектры поглощения – образуют в совокупности темные линии (линии поглощения) на фоне непрерывного спектра. Поглощение света веществом зависит от длины волны.

Преломление света в линзах

Линзой называется прозрачное тело, ограниченное двумя криволинейными или криволинейной и плоской поверхностями.

В большинстве случаев применяются линзы, поверхности которых имеют сферическую форму. Линза называется тонкой, если ее толщина d мала по сравнению с радиусами кривизны ее поверхностей R1 и R2. В противном случае линза называется толстой. Главной оптической осью линзы называют прямую, проходящую через центры кривизны ее поверхностей. Можно считать, что в тонкой линзе точки пересечения главной оптической оси с обеими поверхностями линзы сливаются в одну точку О, называемую оптическим центром линзы. Тонкая линза имеет одну главную плоскость, общую для обеих поверхностей линзы и проходящую через оптический центр линзы перпендикулярно к ее главной оптической оси. Все прямые, проходящие через оптический центр линзы и не совпадающие с ее главной оптической осью, называют побочными оптическими осями линзы. Лучи, идущие вдоль оптических осей линзы (главной и побочных), не испытывают преломления.

Читайте также:  Как сделать адаптивный свет фар

Формула тонкой линзы:

где п21 = п2/п1, п2 и n1 — абсолютные показатели преломлениядля материала линзы и окружающей среды, R1 и R2 — радиусы кривизны передней и задней (относительно предмета) поверхностей линзы, а1 и а2 — расстояния до предмета и его изображения, отсчитываемые от оптического центра линзы вдоль ее главной оптической оси.

Величину называют фокусным расстоянием линзы. Точки, лежащие на главной оптической оси линзы по обе стороны от оптического центра па одинаковых расстояниях, равных f, называют главными фокусами линии. Плоскости, проходящие через главные фокусы F1 и F2 линзы перпендикулярно к ее главной оптической оси, называют фокальными плоскостями линзы. Точки пересечения побочных оптических осей с фокальными плоскостями линзы называют побочными фокусами линзы.

Линзу называют собирающей (положительной), если ее фокусное расстояние f >0. Линзу называют рассеивающей (отрицательной), если ее фокусное расстояние f n1 собирающими линзами являются двояковыпуклые, плоско-выпуклые и вогнуто-выпуклые (положительные менисковые линзы), утоньшающиеся от центра к краям; рассеивающими являются двояковогнутые, плоско-вогнутые и выпукло-вогнутые линзы (отрицательные мениски), утолщающиеся от центра к краям. Для п2 n1.

Источник