Меню

Как получить свет от тепла



Как получить бесплатное электричество (мы нашли четыре способа)

Мы привыкли получать электрическую энергию из внешних источников — главным образом, из городских сетей. Когда речь заходит об альтернативных источниках, то первое, о чем вспоминают — это, конечно, солнечные панели и ветрогенераторы. Но сегодня мы хотим рассказать про более интересные источники, из которых вы сможете в домашних условиях извлечь электроэнергию.

Как получить электричество от батареи отопления

Для того чтобы получить бесплатное электричество от радиаторов отопления, нам понадобится дополнительное оборудование в виде термоэлектрического элемента Пельтье. Элемент Пельтье представляет собой две керамические пластины, между которыми заключено большое количество полупроводников в виде термопар.

Принцип действия основан на возникновении разности температур при протекании электрического тока. Обычно такие устройства используют для создания мобильных холодильных установок, но можно добиться и обратного эффекта. Достаточно изменить полярность подключения элемента, и эффект охлаждения сменится на нагревание.

Элемент Пельтье

Если с одной стороны подвести тепло к этому элементу, а с другой, наоборот, охлаждать его, то благодаря созданию разности температур на его поверхностях, можно снимать с него электроэнергию, которой вполне хватит, например для работы светодиодной лампы.

Чтобы закрепить конструкцию на трубе отопления, можно воспользоваться алюминиевым уголком. А для повышения плотности контакта образовавшиеся зазоры можно уплотнить алюминиевой фольгой.

1- Труба отопления 2- Алюминиевый уголок 3- Радиатор от старого ПК 4- Элемент Пельтье (40*40 мм) 5- Повышающий преобразователь 6- Алюминиевая фольга

Также потребуется преобразователь напряжения, который повышает создаваемое элементом Пельтье напряжение 0,5 В до 3–5 В, необходимых для работы светодиодной лампы.

Повышающий преобразователь напряжения.

С одной стороны мы нагреваем элемент Пельтье теплом от радиатора отопления, а с другой стороны охлаждаем его окружающим воздухом. Чтобы увеличить площадь поверхности охлаждения, можно использовать обычный радиатор охлаждения от старого компьютера. Чем больше будет его площадь, тем лучше.

Такое устройство может пригодиться в качестве бесплатного дежурного освещения, например, в подъезде. Конечно, этот метод получения электричества можно назвать лишь условно бесплатным, ведь за отопление вы так или иначе платите деньги, но почему бы не использовать кэшбек в виде бесплатной электроэнергии?

Электроэнергия из водопровода

Второй не менее интересный способ — врезка минигенератора в водопровод. Получение электричества от энергии движения потока воды само по себе не ново. Гидроэлектростанции, использующие подобный принцип, работают по всему миру. А плотины для их использования являются одними из самых сложных технических устройств.

В процессе строительства участвовали более 5 тыс. рабочих, 96 человек погибло.

Небольшие генераторы, которые можно установить непосредственно в домашний водопровод, можно приобрести в интернет-магазинах. Генератор, подключают к небольшому аккумулятору и используют накопленную таким образом электроэнергию для освещения.

Некоторые умельцы делают такие генераторы своими руками, собирая их из старого водяного счетчика и помпы от стиральной машины. Подключают такие генераторы даже к бачкам унитаза. Расчеты показывают, что выработки электричества от одного смыва бачка унитаза хватит на 12 минут непрерывного свечения светодиодной лампы мощностью 5 ватт.

Электричество от самодельных элементов питания

Электроэнергию можно получить от импровизированных батареек, собранных буквально «на коленке». Как известно любая батарея использует в своей основе заряженные частицы образующиеся в процессе взаимодействия металлов, помещенных в токопроводящую жидкость.

Читайте также:  Как открыть дверь домофона если отключили свет

Достаточно взять две пластины различных металлов, например, цинка и меди, и поместить их в стаканчик с водой, а затем замкнуть эту цепь, используя в качестве нагрузки светодиодную лампу. Такая конструкция позволит вам получить порядка 0,8 В.

Причем это напряжение не будет зависеть от площади пластин.

Если подсоединить несколько таких пар пластин последовательно, то вы получите довольно емкую батарею, которой хватит на работу хорошего светодиодного фонаря.

Электричество из земли

В 1896 году Натан Беверли Стаблфилд изготовил батарею, используя для этого энергию земли и получил патент на своё устройство.

Для него нужны два провода, один металлический без изоляции – чтобы он мог активизировать магнитное поле, которое создается и поддерживается в пределах и вокруг тела катушки. Второй – медный в обмотке, который наматывается на стальной сердечник.

После каждого витка укладывается слой изолирующего материала. Такую конструкцию помещают во влажную землю, провода выводят наружу и батарея улавливает естественные электрические токи, позволяя использовать электричество в своих целях. Такие батареи можно использовать, например, на своем участке для декоративной подсветки дорожек.

Как видите, электрическая энергия окружает нас и находится буквально повсюду. Главное – это знать основные принципы и законы, по которым она извлекается и тогда извлечь ее не составит труда даже в домашних условиях с минимальными затратами.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник

Как получить бесплатное электричество от батареи отопления

Здравствуйте, уважаемые читатели и самоделкины!

Наверняка каждый из Вас знает, что нагрев помещений от систем центрального отопления осуществляется при помощи радиаторов путем конвекции и теплового излучения. Также многим из Вас известен термоэлектрический элемент Пельтье , на основе которого создают небольшие автомобильные холодильники, системы охлаждения компьютерных процессоров, и другие устройства.

Кроме того, что этот модуль может создавать разность температур на противоположных его поверхностях при подаче на него напряжения, эффект Пельтье работает и в обратную сторону. То-есть, при создании разницы температур, он преобразует тепловую энергию в электрическую.

В данной статье Игорь, автор одноименного YouTube канала «Игорь Белецкий», расскажет Вам как можно получить немного электричества от системы отопления.


Этот проект очень прост в изготовлении, и может быть повторен в домашних условиях.

5 В USB разъем
— USB светильник с сенсорным выключателем
— Термопаста , алюминиевая фольга, припой
— П-образный алюминиевый профиль, полоса, болты, саморезы
— Старый радиатор от компьютерного процессора.



Для того, чтобы тепло хорошо передавалось к площадке, мастер уплотнил соединение стальной трубы отопления с профилем при помощи бытовой алюминиевой фольги. При этом нужно постараться, чтобы в таком уплотнении было минимальное количество пустот — они будут препятствовать передаче тепла.

Данная конструкция не должна нарушить целостность трубы, тем более, если Вы будете устанавливать ее на систему центрального отопления.

Читайте также:  Как поменять лампу дневного света camelion


Игорь использовал один из самых распространенных термоэлектрических модулей Пельтье TEC1-12705 . Этот полупроводниковый элемент представляет собой две керамические пластины, между которыми заключены 127 полупроводниковых «столбиков» (отсюда и первые три цифры в модели).

Последняя пара цифр означает максимальный ток, потребляемый элементом в режиме холодильника от источника 12В. TEC1-12705 потребляет до 4,3-4.6A (номинальный при 12 В), максимальный ток 5.8A — при напряжении 15В в момент запуска.
Размеры таких модулей составляют 40X40 мм, а толщина — от 3,2 до 4,0 мм.

Перед установкой модуля нужно определить его горячую и холодную поверхности, подав на него питание. Модуль нужно устанавливать на теплопроводе «холодной» стороной.

Вторую сторону модуля необходимо охлаждать при помощи обычного пассивного радиатора. Для этих целей отлично подходят старые радиаторы от компьютерных процессоров. Они весьма компактны, и обеспечат достаточную для генерации электроэнергии разницу температур.

На обе стороны модуля необходимо нанести термопасту для обеспечения наилучшей теплопередачи между элементами устройства.






Для нормальной работы устройства необходима достаточно большая разность температур. Трубы отопления должны иметь температуру в 55 и более градусов, а воздух в помещении — около 21.

Измерять температуру различных объектов бесконтактным способом очень удобно при помощи цифрового инфракрасного термометра . В случае автора, батареи прогреты до 60 градусов.

Все же, данной разницы температур недостаточно для получения напряжения более 1,2 В. Поэтому необходимо использовать специальный DС-DC повышающий модуль . Он начинает работать при напряжении 0,8-0,9 В на входе. При этом на выходе получается 5В постоянного тока.

Эта модель преобразователя имеет USB порт, к которому удобно подключать различные устройства, в том числе заряжать телефоны.
Игорь создавал этот проект для обеспечения питанием небольших светодиодных светильников, которые послужат фоновой подсветкой в ночное время, либо как аварийные. Такая подсветка будет хорошим дополнением для темного осенне-зимнего периода.

К преобразователю можно подключить вот такой USB светильник с сенсорным выключателем .


В итоге от установленного устройства хорошо работает светодиодный светильник, а радиатор рассеивает немного дополнительного тепла, прошедшего через модуль Пельтье.

Конечно, можно установить несколько таких модулей, и подключить их последовательно. Тогда напряжение на выходе цепи будет выше. При этом можно использовать как раздельные радиаторы, так и один общий, больших размеров.

Вместо светильника можно попробовать подключить компьютерный вентилятор, которым будет обдуваться радиатор. Такое решение может немного увеличить теплоотдачу от системы отопления, но никак не сравнится с установкой дополнительной батареи.

Эффективнее всего можно использовать возможности элемента Пельтье в тандеме с буржуйкой или другими похожими устройствами, ведь разность температур в этом случае будет намного больше.




Благодарю Игоря за интересный способ получения электроэнергии от тепла системы отопления.

Всем хорошего настроения, крепкого здоровья, и интересных идей!
Подписывайтесь на телеграм-канал сайта, чтобы не пропустить новые статьи.

Авторское видео можно найти здесь.

Источник

Найден новый способ превращения тепла в электричество

Уже достаточно давно человечество умеет превращать один вид энергии в другой. Скажем, при сжигании угля образуется тепло, которым можно обогревать наши дома, а в двигателе внутреннего сгорания автомобиля углеводородное топливо в виде бензина преобразуется в энергию, позволяющую автомобилю ехать. Но прогресс не стоит на месте и ученые регулярно находятся в поисках новых способов получения энергии, о которых мы вам сообщаем на сайте и в нашем Телеграм-канале. Так, совсем недавно команда экспертов из США представила новый способ превращения тепла в электричество. И он, надо сказать, весьма экстравагантен.

Читайте также:  Когда нужно ездить со светом днем

Наука предоставляет массу способов получения энергии. Порой из таких источников, о которых мы даже не догадывались

Как превратить тепло в электричество

По сообщению редакции издание EurikAlert, которое ссылается на исследование опубликованное в журнале Science Advances, группа ученых из Университета штата Огайо придумала, как улавливать тепло и превращать его в электричество. Причем использовать для этого можно любой источник тепла: от рассеивающегося тепла от промышленных установок и до выхлопов автомобилей.

Благодаря нашему открытию мы потенциально сможем более эффективно использовать ресурсы и получать больше электрической энергии из тепла, — сказал соавтор работы Джозеф Хереманс, профессор механики и аэрокосмической техники, занимающийся также исследованиями в области нанотехнологий в Университете штата Огайо. До сих пор никто не думал, что что-то подобное в принципе возможно.

В основе открытия лежит явление электромагнетизма (которое известно достаточно давно). Простой пример: когда одна сторона магнита нагревается, другая сторона остается холодной и наращивает свой потенциал. Из-за нарастания потенциала появляется избыток энергии, который можно преобразовать в электричество. Но есть одна проблема. Магниты при нагревании «теряют магнитную силу» и размагничиваются поэтому грубо говоря, для создания электричества из тепла магнит можно использовать «лишь один раз».

Тут на помощь приходят парамагнетики. Парамагнетики — это вещества, которые намагничиваются под воздействием магнитного поля, но при этом не теряют после прекращения воздействия эту, грубо говоря, «магнитную силу». И, что важно, парамагнетики устойчивы к воздействию тепла. Но и тут есть проблема: парамагнетики по сравнению с обычными магнитами «очень слабые» и до сегодняшнего дня считалось, что они не способны вырабатывать энергию.

Мы обнаружили, что это не совсем так. Мы нашли новый способ создания термоэлектрических полупроводников на основе парамагнетиков. Традиционные термоэлектрические системы, которые появились около 20 лет назад, слишком неэффективны и дают нам слишком мало энергии.

Совместив парамагнетики с полупроводниками, ученые создали интересное устройство: с одной стороны парамагнетики могут, нагреваясь и охлаждаясь, генерировать энергию. С другой стороны — полупроводниковые материалы позволяют использовать полученную энергию. Как заверяют ученые, электричество можно как запасать в обычных аккумуляторных батареях, так и сразу же пускать на питание электронных устройств и компонентов.

Под направленным воздействием магнитного поля парамагнетики приобретают магнитные свойства

Исследователи уверены, что их разработка может пригодиться именно на промышленном производстве, где потери рассеивающегося тепла довольно высокие и в таких масштабах установка по преобразованию тепла в электричество покажет наибольшую эффективность. Например, при переплавке стали отходящее тепло можно использовать для питания различных установок завода, что снизит конечную стоимость продукции.

Источник