Меню

Как определить степень поляризации света



Степень поляризации и закон Малюса

На выходе из несовершенного поляризатора получается свет, в котором колебания одного направления преобладают над колебаниями других направлений. Такой свет называется частично поляризованным.

Если пропустить частично поляризованный свет через поляризатор, то при вращении прибора вокруг направления луча интенсивность прошедшего света будет изменяться в пределах от Imax до Imin, причем переход от одного из этих значений к другому будет совершаться при повороте на угол, равный π/2 (за один полный поворот два раза будет достигаться максимальное и два раза минимальное значение интенсивности).

Степень поляризации

Степень поляризации (степень выделения световых волн с определенной ориентацией электрического (и магнитного) вектора) зависит от угла падения лучей и показателя преломления.

называется степенью поляризации. Для плоскополяризованного света Imin=0 и Р=1; для естественного света Imax=Imin и P=0. К эллиптически- поляризованному свету понятие степени поляризации не применимо (у такого света колебания полностью упорядочены, так что степень поляризации всегда равна 1).

Колебание амплитуды А, совершающееся в плоскости, образующей с плоскостью поляризатора угол j можно разложить на колебания с амплитудами и . Первое колебание пройдет через прибор, второе будет задержано. Интенсивность прошедшей волны пропорциональна , т.е. равна , где I — интенсивность колебания с амплитудой А. Следовательно, колебание, параллельное плоскости поляризатора, несет с собой долю интенсивности, равную .В естественном свете все значения j равновероятны. Поэтому доля света, прошедшего через поляризатор, будет равна среднему значению , т.е. ½. При вращении поляризатора вокруг направления естественного луча интенсивность прошедшего света остается одной и той же, изменяется лишь ориентация плоскости колебаний света, выходящего из прибора.

Закон Малюса

Пусть на поляризатор падает плоскополяризованный свет амплитуды А и интенсивность I. (рис. 6.1). Сквозь прибор пройдет составляющая колебания с амплитудой А=Аcosφ, где φ — угол между плоскостью колебаний падающего света и плоскостью поляризатора. Следовательно, интенсивность прошедшего света I определяется выражением

Соотношение (2) носит название закона Малюса.

Источник

Степень поляризации света

Нужно подобрать материалы для студенческой работы?

Поляризация света — понятие, определение

Поляризация — это явление направленного колебания векторов напряженности в электромагнитной волне. Возникает только в поперечных волнах.

Поляризация возникает при распространении волн в анизотропных средах (кристаллах), при отражении и преломлении волн на границе раздела сред. Явление было открыто Христианом Гюйгенсом в 1678 году, термин введен французским ученым Этьеном Луи Малюсом в 1808 году.

В начале XIX столетия утверждение, что свет — это электромагнитная волна, а не упругое возмущение эфира, казалось нелепым, но позже было доказано, что свет — это гармонические колебания электрического и магнитного полей, распространяющиеся в пространстве.

Электромагнитные волны почти всегда обладают свойствами поперечных волн, поскольку вектора напряженности в них колеблются перпендикулярно направлению распространения волны. Продольными электромагнитные волны бывают только в сильно диспергирующих средах.

Свет от естественных источников обычно не поляризован: он является смесью пакетов волн со всевозможными направлениями поляризации, и потому через поляризатор, независимо от угла его поворота, всегда проходит примерно одинаковое количество лучей. А вот излучение лазера, как правило, линейно поляризовано, даже если это маленькая лазерная указка.

Поляризация бывает круговой, эллиптической и линейной — в зависимости от формы кривой, вычерчиваемой концом вектора амплитуды. Если направление вектора \(\overrightarrow Е\) неизменно, волна называется линейно поляризованной, а линия, вдоль которой он колеблется, — направлением поляризации. Плоскость, в которой кроме вектора \(\overrightarrow Е\) лежит еще вектор скорости волны, называется плоскостью поляризации.

Если же направление вектора \(\overrightarrow Е\) изменяется, и он вращается вокруг вектора скорости волны, то поляризация называется круговой. В данном случае проекциями вектора \(\overrightarrow Е\) на две взаимно перпендикулярные оси будут самостоятельные гармонические волны: одна из них отстает от другой на четверть длины волны.

Можно сказать, что круговая поляризация — результат сложения двух линейно поляризованных волн. Если же складываются две волны круговой поляризации, у которых векторы \(\overrightarrow Е\) вращаются в противоположных направлениях, получается линейно поляризованная волна.

Читайте также:  Как платить за свет с общедомовыми нуждами

В самом общем случае вектор \(\overrightarrow Е\) при вращении периодически изменяет свою длину. Такая поляризация называется эллиптической, круговая и линейная поляризация — ее частные случаи. Круговая или эллиптическая поляризация может быть правой или левой, что определяется направлением вращения вектора.

Чтобы описать поляризацию волны, компоненты вектора напряженности выражают с помощью параметров Стокса, интерпретируя их, как координаты точек, расположенных на сфере, называемой сферой Пуанкаре.

Как получить поляризованный свет

В 1808 году французский физик Этьен Луи Малюс случайно посмотрел на отражение заходящего солнца в окне Люксембургского дворца через пластинку исландского шпата, которую постоянно носил с собой. Яркость света при повороте пластинки изменялась. Проделав той же ночью опыты с отражением света от стекла и поверхности воды, он убедился, что отраженный свет действительно гасится, проходя через кристалл.

Малюс сделал вывод, что корпускулы света, как и магнит, имеют полюса, а наблюдаемое явление назвал поляризацией. Он обнаружил также, что лучи, прошедшие через кристалл исландского шпата, полностью поляризованы, а следовательно, полностью гасятся поворотом анализатора — второй пластинки исландского шпата, через которую ведется наблюдение.

Через некоторое время, исследуя проявления поляризации, Огюстен Френель понял, что их можно объяснить, только приняв предположение о поперечном характере световых волн. Теоретические рассуждения о том, как волны огибают препятствия, Френель заменил доказательством интерференции вторичных волн.

Интерференция света — это перераспределение интенсивности световых волн, происходящее благодаря их наложению друг на друга.

Приборы для получения поляризованного света называют поляризаторами, но если с помощью такого прибора измеряются физические параметры исследуемого света, то тот же самый прибор будет называться анализатором.

В первое время проведение экспериментов по изучению поляризации было связано с большими сложностями. Для подобных исследований прежде всего необходим анализатор, т. е. поляризатор, который выделяет свет с определенной поляризацией.

Вначале анализатором служил кристалл исландского шпата, но он давал два пучка одновременно. Поэтому приходилось или ограничиваться изучением тонких пучков, чтобы по-разному поляризованные лучи не накладывались друг на друга, или искать кристаллы большого размера и превосходного качества, без дефектов.

Позже выяснилось, что поляризованный в одном направлении свет можно получить при отражении под определенным углом, названным углом Брюстера. Это позволило работать с широкими световыми пучками, но при исследовании их поляризации путем поворота анализатора, отраженный луч смещался.

В 1816 году французский физик Жан Батист Био обнаружил, что кристалл турмалина обладает двойным лучепреломлением, но обыкновенный луч в нем поглощается гораздо сильнее, чем необыкновенный. Для выделения луча с определенной поляризацией сегодня широко применяют поляроиды — прозрачные тонкие пленки, которым присуще аналогичное свойство.

Самый известный анализатор изобрел в 1828 году шотландец Уильям Николь. Призма Николя изготовляется из распиленного и снова склеенного кристалла исландского шпата. Обыкновенный луч отражается от распила и отводится в сторону, остается только необыкновенный.

Что такое степень поляризации света, от чего она зависит

В 1811 году француз Доминик Франсуа Араго обнаружил отличия в оптической активности разных веществ — способности изменять направление поляризации света, прошедшего через кристалл. В 1815 году шотландец Дэвид Брюстер установил, что тангенс угла полной поляризации, известного теперь, как угол Брюстера, равен показателю преломления вещества, тем самым выведя формулу для подсчета этого угла.

Луч, отраженный под углом Брюстера, полностью поляризован и всегда расположен под углом 90 градусов к преломленному лучу. Каждая точка поверхности, куда попадает волна, становится вторичным источником лучей — она провоцирует совместные осцилляции дипольных моментов в диэлектрике на молекулярном уровне. Новые волны, попадая в свободное пространство, при движении вперед создают отраженную и преломленную волну.

Под другим углом граница раздела сред не может отразить 100% света, часть его входит в состав преломленного луча, так что полная поляризация недостижима. Чтобы вычислить степень частичной поляризации, нужно воспользоваться выражением:

\(I_\) и \(I_\) здесь — максимальная и минимальная интенсивность. Если свет естественный, они равны, и степень поляризации равна нулю.

Читайте также:  Dominations какое чудо света лучше строить

Для эллиптически поляризованных лучей света понятие степени поляризации не применимо. Она всегда будет равна единице, так как колебания этих лучей полностью упорядочены. Если \(I_\) равна нулю, то степень поляризации будет также равна единице, а поляризатор называется идеальным. Свет при этом будет называться плоскополяризованным.

Закон Малюса

В 1810 году Малюс установил закон: интенсивность луча, прошедшего через анализатор, пропорциональна квадрату косинуса угла поворота анализатора относительно положения максимального пропускания им света. Обыкновенный луч оказался поляризован перпендикулярно необыкновенному.

Кроме того, Малюс продемонстрировал, что луч полностью поляризуется при отражении от поверхности тела под определенным углом, и величина этого угла зависит от свойств вещества.

В каких сферах деятельности применяется поляризация света

Поляризация применяется для создания разных оптических эффектов, например, на ее основе созданы такие технологии, как поляризационная голография и кинематограф IMAX.

Голография — способ записи оптической информации в объемном виде, с сохранением многоракурсности и глубины пространства.

С помощью поляризации можно разделить изображение для правого и левого глаза, а также создать стереоизображения, как в технологиях RealD и MasterImage.

В некоторых случаях необходимо избавиться от слабой естественной поляризации, проявляющейся в бликах на отражающих поверхностях. Для этого существуют специальные поляризационные очки и фильтры для фотографирования.

Физики-оптики продолжают изучать оптические явления, и поляризационные устройства помогают им управлять световыми потоками и измерять их физические параметры. Управлять световыми потоками нужно и светотехникам, которые используют с этой целью специальные устройства — поляроиды.

Работы любой сложности

Квалифицированная помощь от опытных авторов

Источник

Измерение степени поляризации

Nbsp; ИЗУЧЕНИЕ ЯВЛЕНИЯ ПОЛЯРИЗАЦИИ СВЕТА Цель работы: ознакомление с поляризаторами света на примере стопы Столетова; определение степени поляризации частично поляризованного света. Приборы и принадлежности: оптическая скамья, источник света, анализатор (стопа Столетова), конденсорная линза, набор стеклянных пластинок (стопа), фотодиод ФД-2, измерительный прибор.

Сведения из теории

Явление поляризации типично для поперечных волн. Из электромагнитной теории следует, что световая волна поперечна. Колебания вектора напряженности электрического поля Е происходят перпендикулярно направлению распространения волны. Обычные источники света излучают естественный свет, в котором направление колебаний вектора Е, оставаясь перпендикулярным направлению распространения, быстро и беспорядочно меняется. Поэтому естественный свет обладает статистически осевой симметрией относительно направления его распространения. Схематически естественный свет изображается так, как показано на рис.1.

В поляризованном свете такой симметрии нет. Поляризованным называется свет в котором направление колебаний упорядочено каким-либо образом.

Линейно поляризованным или плоскополяризованным называется свет, в котором вектор Е имеет одно единственное направление колебаний (рис. 2). Плоскость, проходящую через вектор Е и направление распространения волны называют плоскостью поляризации (по старой терминологии- плоскостью колебаний).

Если по мере распространения света направление колебаний вектора Е поворачивается так, что конец вектора Е описывает эллипс, то такой свет называется эллиптически поляризованным (рис. 3). В частном случае, когда конец вектора Е описывает окружность, свет называется поляризованным по кругу.

Частично поляризованным называется свет, в котором есть преимущественное, но не единственное направление колебаний вектора Е (рис. 4). Частично поляризованный свет можно рассматривать как смесь естественного с линейно поляризованным.

Для получения поляризованного света используют различные способы: отражение и преломление света на поверхности диэлектрика, прохождение света через поляризатор.

При отражении и преломлении света на границе раздела двух диэлектриков свет частично поляризуется. Преимущественное направление колебаний вектора Е в отраженной волне перпендикулярно плоскости падения, а в преломленной — расположено в плоскости падения. Доля поляризованного света зависит от угла падения и показателя преломления n. Д. Брюстер экспериментально установил, что максимальная поляризация достигается, когда отраженный луч перпендикулярен к преломленному. Легко показать, что это произойдет, если угол падения JБ (угол Брюстера) удовлетворяет условию

(1)

При этом отраженный свет линейно поляризован перпендикулярно плоскости падения, а преломленный — поляризован частично, но степень поляризации его максимальна (закон Брюстера). Для увеличения степени поляризации прошедшего света используют несколько стеклянных пластинок (стопа Столетова).

Читайте также:  Как платить за свет закон

Линейно поляризованный свет можно также получить, пропустив естественный свет через поляроид, который пропускает колебания электрического вектора только одного направления. Поляроиды представляют собой искусственно приготовленные коллоидные пленки, служащие для получения поляризованного света. Наиболее распространенным материалом для приготовления поляроидов является герапатит, представляющий собой соединение йода с хинином. Этот материал вводят в целлулоидную или желатиновую пленку. В ней кристаллы герапатита каким-либо способом (обычно механически) ориентируются своими осями в одном и том же направлении. Полученное вещество поглощает световые колебания одного из двух взаимно перпендикулярных направлений. Существуют и другие способы получения поляризованного света (например, используя явление двойного лучепреломления, рассеяния света).

Всякий прибор, служащий для получения поляризованного света, называется поляризатором. Тот же прибор, применяемый для исследования поляризации света, называется анализатором. Таким образом некоторые кристаллы или поляроиды могут служить и поляризаторами и анализаторами.

Допустим, что два поляризатора поставлены друг за другом так что их оси О и О1 образуют некоторый угол j (рис. 6). На первый поляризатор падает естественный свет интенсивности Iест, он пропускает колебания электрического вектора параллельные оси О амплитуда которых Е и интенсивность I. Второй поляризатор (анализатор) пропускает колебания электрического вектора параллельные оси О 1 амплитуда которых Е и интенсивность I . Разложим Е на вектор Е , параллельный оси О 1 второго поляроида, и вектор Е ^, перпендикулярный к ней (рис. 7). Составляющая Е ^ будет задержана вторым поляризатором. Через второй поляризатор пройдет свет с электрическим вектором Е , длина которого E=Ecosj. Интенсивность света, прошедшего через второй поляроид будет

(2)

Соотношение (2) называется законом Малюса.

Для естественного света все значения угла j между направлением колебаний электрического вектора и осью первого поляризатора равновероятны. Поэтому доля света, прошедшего через поляризатор будет равна среднему значению cos 2 j, т.е. 1/2.

Таким образом интенсивность света, прошедшего через оба поляризатора, равна

(3)

Если пропустить частично поляризованный свет через поляризатор, то при вращении последнего вокруг направления луча интенсивность прошедшего света будет меняться в пределах Imax от до Imin Причем переход от Imax до Imin будет происходить плавно при повороте поляризатора на 90 ° . Степенью поляризации называется величина, определяемая по формуле

(4)

В частности для естественного света Imax = Imin и P=0, а для плоско поляризованного света Imin=0 и P=1.

Описание установки

На оптической скамье 1 (рис. 8) укреплены осветитель 2, конденсорная линза 3, плита с оправой для стеклянных пластинок стопы 4, такая же точно стопа пластинок, являющаяся анализатором 5, который можно вращать в плоскости, перпендикулярной лучу, фотодиод 6, подключенный к измерительному прибору 7.

Порядок выполнения работы

Измерение степени поляризации

Подключить фотодиод к измерительному прибору. Измерить фототок iт при выключенном осветителе, результат занести в таблицу 1.

Таблица 1

N Число пластинок iтIминiмаксi1i2 mА P 1 2 … … …

Поместить набор стеклянных пластинок в оправу стопы 4. Вращением анализатора добиться минимальной освещенности фотодиода. Измерить imin и занести его значение в таблицу 1. Вычислить i1=imini т . Повернуть анализатор на 90°, при этом освещенность фотодиода окажется максимальной, измерить и занести в таблицу 1 imax . Вычислить i2=imax-i т in .

Повторить измерения, убирая по две пластинки. Заполнить таблицу, рассчитать степень поляризации

Построить график зависимости степени поляризации P от числа стеклянных пластинок в стопе N .

Проверка закона Малюса

Установить в стопу Столетова все пластинки. Поворотом анализатора добиться минимального значения фототока. При этом оси поляризатора и анализатора скрещены j=90°. Показания занести в таблицу 2. Поворачивая анализатор через 10°, измеряйте фототок и заносите значения в таблицу.

Таблица 2

j cos 2 j I
1 90
2 80
3 70
4 60
5 50
6 40
7 30
8 20
9 10
10

Построить график зависимости I = f (cos 2 j). Эта зависимость описывается формулой

Коэффициенты I1 и I2 линейной зависимости определите по методу наименьших квадратов.

Контрольные вопросы

Поляризованный и естественный свет. Виды поляризованного света.

Способы получения поляризованного света.

Дата добавления: 2018-10-27 ; просмотров: 665 ;

Источник