Меню

Источники света лазер как источник излучения



Лазерное излучение

Лекция 8

«Лазер» — аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation- усиление света за счет создания стимулированного излучения.

Лазер (оптический квантовый генератор) — генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

Лазерное излучение – это электромагнитное излучение, которое формируется в (лазерах) с длиной волны 0,2-1000мкм: 0,2…0,4 мкм — ультрафиолетовая, 0,4…0,75 мкм — видимого света, ближнего инфракрасного 0,75…1,4 мкм, инфракрасного 1,4…10 2 мкм.

Отличительная особенность лазерных излучений является: монохромность излучения (строго одной длины волны); когерентность излучения (все источники излучения испускают электромагнитные волны в одной фазе); острая направленность луча (малое расхождение).

Лазерное излучение различают по виду излучения на

прямое (заключенное в ограниченном телесном угле)

рассеянное (рассеянное от вещества, находящегося в составе среды, сквозь которую проходит лазерный луч)

зеркально-отраженное (отраженное от поверхности под углом, равным углу падения излучения)

диффузно-отраженное (отражается от поверхности по всевозможным направлениям)

Как техническое устройство лазер состоит из трех основных элементов:

активной среды

резонатора

системы накачки.

В зависимости от характера активной среды лазеры подразделяются на следующие типы: твердотельные (на кристаллах или стеклах); газовые (He-Ne, Ar, Kr, Xe, Ne, He-Cd, CO2 и др.); жидкостные; полупроводниковые и др.

В качестве резонатора обычно используются параллельные зеркала с высоким коэффициентом отражения, между которыми размещается активная среда.

Накачка, т.е. перевод атомов активной среды на верхний уровень, обеспечивается или посредством мощного источника света или электрическим разрядом.

Существуют лазеры непрерывного и импульсного действия.

Классификацию лазеров можно представить в следующем виде (рис):

По степени опасности генерируемого излучения классифицируются лазеры согласноГОСТ 12.1.041-83 (1996):

— класс 1 (безопасные)— выходное излучение не представляет опасности для глаз и кожи;

— класс II (малоопасные) — выходное излучение опасно при облучении глаз прямым или зеркальныо-отраженным излучением;

— класс III (среднеопасные) – опасно для глаз прямое, зеркальное, а также диффузно-отраженное излучение;

— класс IV (высокоопасные) – опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отраженной поверхности.

Классификацию лазеров по степени опасности осуществляют на основе временны́х, энергетических и геометрических (точечный или протяженный источник) характеристик источника излучения и предельно допустимых уровней лазерного излучения.

Технические характеристики лазера: длина волны, мкм; ширина линии излучения; интенсивность излучения (определяется по величине энергии или мощности выходного пучка и выражаемая в Дж или Вт); длительность импульса ,с; частота повторения импульсов,Гц.

Лазеры получили широкое применение в научных целях, в практической медицине, а также в различных областях техники. Области применения лазера определяются энергией используемого лазерного излучения:

Биологическое действие лазерного излучения зависит от энергии излучения Е, энергии импульса Еи, плотности мощности (энергии) Wp (We), времени облучения t, длины волны l, длительности импульса t, частоты повторения импульсов f, потока излучения Ф, поверхностной плотности излучения Еэ, интенсивности излучения I.

Характеризуемый объект Показатель Обозначение Единица измерения
Пучок лазерного излучения Энергия лазерного излучения Е Дж
Энергия импульса лазерного излучения Еи Дж
Мощность лазерного излучения Р Вт
Плотность энергии (мощности) лазерного излучения We , Wp Дж/см 2 (Вт/см 2 )
Поле излучения Поток излучения Ф, F, Р Вт
Поверхностная плотность потока излучения Еэ Вт/м 2
Интенсивность излучения I, S Вт/м 2
Источник излучения Излучательная способность Rэ Вт/м 2
Энергетическая сила излучения Iэ Вт/ср
Энергетическая яркость Le Вт/м 2 ·ср
Приемник излучения Облученность (энергетическая освещенность) Ee Вт/м 2
Энергетическое количество освещения He Дж/м 2

Под воздействием лазерного излучения нарушается жизнедеятельность, как отдельных органов, так и организма в целом. В настоящее время установлено специфическое действие лазерных излучений на биологические объекты, отличающееся от действия других опасных производственных физических и химических факторов. При воздействии лазерного излучения на сплошную биологическую структуру (например, на организм человека) различают три стадии: физическую, физико-химическую и химическую.

На первой стадии (физической) происходят взаимодействия излучения с веществом, характер которых зависит от анатомических, оптико-физических и функциональных особенностей тканей, а также от энергетических и пространственных характеристик излучения и, прежде всего, от длины волны и интенсивности излучения. На этой стадии происходит нагревание вещества, переход энергии электромагнитного излучения в механические колебания, ионизация атомов и молекул, возбуждение и переход электронов с валентных уровней в зону проводимости, рекомбинация возбужденных атомов и др. При воздействии непрерывного лазерного излучения преобладает в основном тепловой механизм действия, в результате которого происходит свертывание белка, а при больших мощностях – испарение биоткани. При импульсном режиме (с длительностью импульсов -2 с) механизм взаимодействия становится более сплошным и приводит к переходу энергии излучения в энергию механических колебаний среды, в частности ударной волны. При мощности излучения свыше 10 7 Вт и высокой степени фокусировки лазерного луча возможно возникновение ионизирующих излучений.

На второй стадии (физико-химической) из ионов и возбужденных молекул образуются свободные радикалы, обладающие высокой способностью к химическим реакциям.

На третьей стадии (химической) свободные радикалы реагируют с молекулами веществ, входящих в состав живой ткани, и при этом возникают молекулярные повреждения, которые в дальнейшем определяют общую картину воздействия лазерного излучения на облучаемую ткань и организм в целом. Схематически основные факторы, определяющие биологическое действие лазерного излучения, можно представить следующим образом:

Читайте также:  История происхождения источников света

Лазерное излучение представляет опасность главным образом для тканей, которые непосредственно поглощают излучение, поэтому с позиций потенциальной опасности воздействия и возможности защиты от лазерного излучения рассматривают в основном глаза и кожу.

Высокой чувствительностью к электромагнитным излучениям обладают роговица и хрусталик глаза, причем оптическая система глаза способна на несколько порядков увеличивать плотность энергии видимого и ближнего инфракрасного диапазона на глазном дне по отношению к роговице.

Длительное действие лазерного излучения видимого диапазона (не на много меньше ожогового порога) на сетчатку глаза может вызвать необратимые изменения в ней, а в ближнем инфракрасном диапазоне может привести к помутнению хрусталика. Клетки сетчатки после повреждения не восстанавливаются.

Действие лазерного излучения на кожу в зависимости от первоначальной поглощенной энергии приводит к различным поражениям: от легкой эритемы (покраснения) до поверхностного обугливания и, в конечном итоге, образования глубоких дефектов кожи.

Различают 6 видов воздействия ЛИ на живой организм:

1) термическое (тепловое) действие. При фокусировании лазерного излучения выделяется значительное количество теплоты в небольшом объеме за короткий промежуток времени;

2) энергетическое действие. Определяется большим градиентом электрического поля, обусловленного высокой плотностью мощности. Это действие может вызвать поляризацию молекул, резонансные и другие эффекты.;

3) фотохимическое действие. Проявляется в выцветании ряда красителей;

4) механическое действие. Проявляется в возникновении колебаний типа ультразвуковых в облучаемом организме.

5) электрострикция – деформация молекул в электрическом поле лазерного излучения;

6) образование в пределах клетки микроволнового электромагнитного поля.

Предельно-допустимыми уровнями (ПДУ) облучения приняты энергетические экспозиции. Для ПДУ непрерывного лазерного излучения выбирают энергетическую экспозицию наименьшей величины, не вызывающей первичных и вторичных биологических эффектов (с учетом длины волны и длительности воздействия). Для импульсно-периодического излучения, ПДУ облучения рассчитывают с учетом частоты повторения и воздействия серии импульсов.

При эксплуатации лазеров, помимо лазерного излучения, возникают и другие виды опасностей. Это – выделение вредных химических веществ, шум, вибрация, электромагнитные поля, ионизирующие излучения и др.

Дата добавления: 2015-06-27 ; Просмотров: 9332 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Лазерное освещение — луч, указывающий дорогу в будущее

Применение лазеров охватывает значительную часть деятельности человека. Лазер является источником света с уникальными свойствами, тем не менее он долго не применялся для освещения. И вот, наконец, удалось создать образец системы освещения на основе лазера, которая пригодна для массового производства. О том, как работает лазерное освещение, его преимуществах и недостатках, пойдет речь в настоящей статье.

На выставке потребительской электроники CES 2019, прошедшей в январе 2019 года в Лас-Вегасе, была представлена автомобильная фара на основе лазера. Такие продукты в виде опытных продуктов демонстрировались и ранее, например, в 2014 году. Но на этот раз интрига была, во-первых, в том, что наконец-таки был представлен продукт, готовый к серийному производству, во-вторых, он имел принципиально новый функционал (дальность действия до 1 км, поддержка технологии передачи данных световым лучом Li-Fi) и, в-третьих, в проекте принял участие нобелевский лауреат Сюдзи Накамура, один из создателей светодиодов белого свечения.

Возможности лазера

Свойства лазерного луча действительно удивительны. Вы можете сфокусировать его, получив на большом расстоянии световое пятно малого размера. Лазером можно резать металлические листы. Наконец, лазеры применяются в медицине, как для проведения операций, так и для безоперационного лечения.

Чтобы понять, чем обусловлены возможности лазера, сравним его с некоторыми видами источников излучения, применяемых для освещения. Для этого вспомним, что свету свойственен так называемый корпускулярно-волновой дуализм: он одновременно представляет собой как электромагнитную волну, так и поток мельчайших частиц (фотонов).

Излучение лампы накаливания состоит из бесконечно большого числа составляющих с разной длиной волны в широком спектре. Излучение светодиода определенного цвета (не белого) состоит из бесконечно большого числа составляющих в относительно узком спектре. Длину волны, на которой приходится максимум спектральной плотности, принято считать длиной волны излучения светодиода. Газоразрядные источники низкого давления дают спектр, состоящий из одной или нескольких узких полос. Например, натриевые лампы низкого давления дают одну спектральную составляющую с длиной волны 620 нм. Такое свойство называется монохромностью. Однако излучение света происходит спонтанно, в результате фотоны, вылетающие из лампы, имеют разные направления распространения, поляризацию и фазу.

Лазерное излучение обладает такими свойствами, как монохромность, определенная поляризация и, самое главное — когерентность. Каждый фотон, вылетающий из лазера, имеет точно такие же свойства, как и предыдущий, а именно, те же направление движения, поляризацию и фазу. В итоге происходит усиление света по сравнению со спонтанным излучением.

Лазерное излучение может быть точно сфокусировано. Оптические свойства материала линзы зависят от длины волны преломляемого света. Поэтому если вы фокусируете солнечный свет или свет лампы накаливания, то получите не одну точку, а пятно очень малых, но все же конечных размеров.

Когда лазерное излучение проходит через линзу, то зависимость коэффициента преломления от длины волны никак не сказывается, потому что весь спектр состоит из одной составляющей с заданной длиной волны. Излучение фокусируется в одной точке бесконечно малых размеров. Благодаря этому лазерным излучением можно резать металл, также удается сфокусировать луч лазера на большом расстоянии.

Читайте также:  Естественными источниками света являются

Лазер обладает высокой энергоэффективностью, так как по своему принципу работы является резонансным устройством (в отличие от светодиодов и других источников света). Для того, чтобы понять, что это может дать для светотехники, проведем аналогии со звучанием старых концертных залов, построенных еще до появления звукоусилительной аппаратуры. В них звук усиливается за счет системы резонаторов, настроенных на частоту человеческого голоса. В итоге звук исполнителя на сцене хорошо слышен по всему залу, хотя дополнительная энергия при этом не расходуется. Точно так же за счет резонансных явлений полупроводниковый лазер более эффективен, чем светодиод и другие источники света.

Но монохроматичность лазера с точки зрения освещения является большим недостатком. Для систем освещения нужен белый свет, то есть широкополосное излучение. Таким образом, решение задачи создания системы лазерного освещения сводится к сочетанию таких, казалось бы, несочетаемых вещей, как монохромность и коге-рентность, с одной стороны, и широкополосность, с другой.

Как создавался лазер.
Предшественником лазера был мазер — прибор, работающий на схожем принципе, но дающий излучение не в световом, а в микроволновом диапазоне. Мазер был изобретен в середине 50-х годов советскими учеными Николаем Басовым и Александром Прохоровым, а также, независимо от них, американцем Чарлзам Таунсом. В 1964 году все трое были удостоены за изобретение мазера Нобелевской премии по физике.
Первый лазер, дающий излучение в видимом диапазоне, создал в 1960 году американский физик Теодор Майман.
В настоящее время наибольшее распространение получили полупроводниковые лазеры, изобретенные в 1963 году советским физиком Жоресом Алферовым и, независимо от него, американским физиком немецкого происхождения Гербертом Кремером. Но массовое производство таких лазеров стало возможным только в конце 70-х годов. За исследования в области полупроводниковых гетероструктур, приведшие, в частности, к созданию полупроводниковых лазеров, Жорес Алферов и Герберт Кремер были удостоены в 2000 году Нобелевской премии по физике.

Спектр излучения (слева направо):
люминесцентной лампы, светодиода на основе фиолетового чипа и обычного светодиода

От SORAA — к лазерному освещению

Основой для классического белого светодиода является кристалл, излучающий синий цвет с длиной волны 450 нм. На этот кристалл наносится люминофор, дающий зеленые и красные составляющие спектра в результате возбуждения его синим свечением. В результате суммирования излучения кристалла и люминофора получается белое свечение. Недостатком такого подхода является наличие явно выраженного всплеска в синей области спектра и «провала» в синезеленой части. С развитием технологии эти проблемы постепенно решались, тем не менее радикально улучшить цветопередачу светодиодов удалось, перейдя на принципиально новую технологию, развитие которой проложило дорогу лазерным осветительным системам.

Сюдзи Накамура основал компанию SORAA для развития технологии так называемых фиолетовых светодиодов. Основой таких светодиодов является чип, излучающий свет с длиной волны около 400 нм, находящийся на границе видимого диапазона и ультрафиолетового излучения. Чип покрывается трехполосным люминофором, который, будучи возбужденным излучением с длиной волны 400 нм, дает излучение синего, зеленого и красного цвета. Суммируясь, эти составляющие в итоге дают белое свечение. Принципиальным моментом является то, что люминофор практически полностью поглощает излучение чипа, то есть составляющая с длиной волны 400 нм в правильно сконструированном фиолетовом светодиоде не должна выходить за пределы устройства. Аналогичные светодиоды выпускают сейчас несколько фирм, в качестве примера можно привести линейку SunLike от Seoul Semiconductor.

Трехполосный люминофор можно возбуждать не светодиодом, а полупроводниковым лазером с длиной волны 400 нм. При этом мы также получим белое свечение, не содержащее в своем спектре исходного лазерного излучения. Именно на таком принципе и основаны лазерные системы освещения. Неудивительно, что компания SLD Laser, представившая произведшую на CES 2019 фурор автомобильную фару, стала ответвлением от SORAA, а ее техническим директором является все тот же Сюдзи Накамура.

Испытание предсерийного образца лазерной фары от SLD Laser

Проблема создания светодиодных фар

Светодиодные фары ближнего света используются сейчас в автомобилях повсеместно. А вот фары дальнего света на галогенных лампах по-прежнему превосходят по основным характеристикам светодиодные. Проблема заключается в том, что для таких фар источник света должен иметь как можно меньшие размеры. Но размеры светодиода сдерживаются ограничениями по плотности тока через него. Плотность тока равна отношению силы тока, протекающего через кристалл, к площади его сечения. То есть чем больше требуется световой поток, тем больший ток должен протекать через светодиод. И тем большими размерами должен обладать кристалл.
На современном уровне развития полупроводниковой светотехники обеспечить нужный световой поток от одного кристалла невозможно. Поэтому в фарах применяют светодиодные матрицы, обладающие значительными световыми габаритами. Кроме того, есть проблемы с отведением тепла от светодиодов, сосредоточенных в одном месте. Решить перечисленные проблемы можно с помощью лазерных систем освещения.

Освещение дороги светодиодными фарами (слева)
и опытным образцом лазерных фар, разработанных BMW

Преимущества лазерных систем для фар

Максимальная плотность тока в полупроводниковом лазере может быть в 1000 раз больше, чем в светодиоде. Благодаря этому можно значительно уменьшить размеры кристалла, что важно для автомобильных фар.

Читайте также:  Расположение предохранителя ваз 2106 дальнего света

Резонансные явления, о которых упоминалось ранее, обеспечивают более высокий КПД полупроводниковых лазеров относительно светодиодов. То есть увеличивается доля энергии, идущая на полезное излучение, и одновременно уменьшается нагрев кристалла. Но лазеры позволяют принципиально по-новому организовать охлаждение источника света. От одного кристалла можно получить больший световой поток. SLD Laser объявила, что ей удалось получить световой поток 1000 лм от одного SMD лазера для освещения.

Лазер можно разместить отдельно от фары, в том месте автомобиля, где можно обеспечить его наилучшее охлаждение. Излучение лазера подается в фару по световоду и преобразуется в белое свечение непосредственно в фаре при помощи трехполосного люминофора. Внимательный читатель может отметить, что теоретически такую схему построения фары можно реализовать и с применением светодиодов. Но существующие на практике технологические ограничения позволяют реализовать ее только на основе лазера. Именно лучи лазера можно точно сфокусировать, чтобы они полностью вошли в световод. Потери в световоде минимальны только для одной длины волны, при передаче через него даже узкополосного спектра синего светодиода потери значительны, чего не скажешь о лазере, настроенном на «окно прозрачности» световода.

Важное преимущество лазерной осветительной системы — возможность размещения
источника света вне осветительного прибора с передачей излучения по оптоволокну.
Это позволяет обеспечить оптимальный температурный режим источника света

Li-Fi в фарах на лазерах

Широко разрекламированным преимуществом фар на основе лазера является возможность реализации технологии Li-Fi. Эта технология позволяет передавать информацию путем модуляции светового потока на частоте, не заметной глазу. В принципе, Li-Fi можно реализовать на любом полупроводниковом источнике света, для этого подходит и светодиод. Новизна заключается в том, что на полупроводниковом источнике света, а именно, на полупроводниковом лазере создана фара дальнего света, причем с дальностью до 1 км. Ранее технология Li-Fi использовалась для связи в пределах офиса, на расстоянии порядка нескольких метров.

Через Li-Fi автомобиль на дороге может передавать другим участникам дорожного движения, например, информацию о своих параметрах, количестве и составе пассажиров (есть ли дети), цели поездки (может заменить или дополнить классическую «мигалку»). Все это станет особенно актуальным при переходе на беспилотные автомобили.

Фара — лазерная, но спектр — обычный.
Следует отметить, что из автомобильной фары выходит излучение с широким спектром, близким к спектру солнечного света. Это — не лазерное излучение! Лазер используется только для возбуждения люминофора. Возможность фокусировки светового пучка на большие расстояния обусловлена не когерентностью излучения, а исключительно малым размером источника света. Но именно такой размер обеспечивается благодаря уникальным свойствам лазера.

Недостатки систем освещения на основе лазера

Как и у любой технической новинки, у систем освещения на основе лазера высокая стоимость и отсутствие широкого опыта применения. Если речь идет об автомобильных фарах, то пока правовое регулирование их отсутствует. Разработчики представленной на CES 2019 фары уверяют, что ее применение в США легально уже в силу того, что законодательство страны не запрещает использование лазерных фар.

Более серьезной проблемой являются вопросы безопасности для здоровья. Лазерное излучение обладает свойствами вызывать резонанс в клетках человеческого организма. Это свойство уже давно используется в медицине. Но одно дело, когда лазерное излучение подается с определенной длиной волны, в строго определенных дозах под наблюдением врачей. И совсем другое — не-контролируемое лазерное излучение с длиной волны, выбранной не по медицинским, а по иным соображениям.

В том случае, если система освещения на основе лазера сконструирована правильно и только что изготовлена, она безопаснее обычных светодиодов. Излучение лазера практически полностью поглощается люминофором, так что в спектре нет даже пресловутого «синего пика». Но при отступлении от технологии в процессе производства, а также при старении правильно изготовленного источника света способность люминофора поглощать лазерное излучение снижается. Наружу «вырывается» лазерное излучение, которое действительно опасно для окружающих.

По мнению автора статьи, решить эту проблему можно, снабдив каждую осветительную систему на основе лазера датчиком, определяющим выход лазерного излучения наружу. При обнаружении такого явления источник света автоматически отключается и включить его обратно пользователь самостоятельно не может. Но такая защита приведет к удорожанию инновационных систем освещения.

Перспективы использования лазера в освещении

Помимо автомобильных фар дальнего света, использование систем освещения на основе лазера имеет смысл для создания мощных прожекторов с углом распределения света менее 1 градуса. Также осветительные приборы на основе лазеров могут найти применение на высокоточных производствах и в медицине, там, где нужно точно сфокусировать пучок света в определенном месте.

Применение лазерных систем для уличного освещения, а также общего интерьерного освещения пока нецелесообразно из-за дороговизны и нерешенных проблем с безопасностью. Тем не менее перспективно использование лазерных систем освещения в охранных целях (в режиме включения на короткий промежуток времени), что позволит просматривать пространство на большем расстоянии, чем при использовании обычного освещения.

Источник: Алексей Васильев, журнал «Электротехнический рынок»

Источник

Adblock
detector