Применение поляризационного света в быту и технике
Применение поляризованного света необычайно широко.
1. В дефектоскопии, когда конструкторы и архитекторы, разрабатывая проекты новых машин и сооружений и рассчитывая отдельные узлы, должны знать, как распределится нагрузка в данном узле, в каких частях она будет наибольшей. С этой целью изготовляется точная модель детали из целлулоида и просматривается в поляризованном свете. Подвергая модель различным нагрузкам, мы ясно увидим на целлулоиде все узлы напряжений и легко можем определить, где нужно усилить конструкцию или, наоборот, облегчить.
2. Геологи, исследуя в поляризованном свете различные минералы и изделия, могут безошибочно отличить природные от искусственных, поддельные от настоящих.
3. Фотографы, выполняя репродукции с картин в застекленных рамах, могут легко уничтожить мешающие им блики от стекла, надевая на объектив поляризационный фильтр.
4. Водителям автомашин в ночное время очень мешают вести машину слепящие фары встречных машин. Надев поляризационные очки, водитель избавляется от этих помех.
5. Поляризационные очки используют для разделения картинок предназначенных для левого и правого глаза в стереокино (направление поляризации линзы левого и правого глаза ортогонально).
6. Поляризационный бинокль помогает капитанам кораблей вести корабль по правильному курсу, уничтожая при наблюдении мешающие световые блики на морских волнах.
7. Применяя поляризованный свет в стекольной промышленности, легко проверить правильность и равномерность закалки стекла.
8. Поляризованный свет используют в быстродействующих затворах (выдержка
9. Поляризованный свет используют также в жидкокристаллических дисплеях, принцип работы которого основан на вращении плоскости поляризации и изменении интенсивности световой волны в соответствии с законом Малюса.
1. Ландсберг С.Г. Оптика. М.: Наука, 1976.
2. Матвеев А.Н. Оптика. М.: Высшая школа, 1985.
3. Королев Ф.А. Курс физики: Оптика, атомная и ядерная физика. М.: Просвещение, 1974.
4. Детлаф А.А., Яворский Б.М. Курс физики. — М.: Высшая школа, 2002.
5. Зисман Г.А. и Тодес О.М. Курс общей физика: В 3-х т. М.: Наука, 1972, т.3.
6. Трофимова Т.И. Курс физики. — М.: Высшая школа, 2001.
7. Савельев И.В. Курс общей физики. М.: Наука, 1973. Т.3.
8. Физический практикум / Под ред. В.И. Ивероновой. М.: Физматгиз, 1968.
9. Ливенцев Н.М. Курс физики. Учебник для вузов. М.: Высшая школа, 1978
Дата добавления: 2017-01-08 ; просмотров: 5753 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Применение поляризации света
Практические применения поляризации света. Применения поляризации света для нужд практики очень разнообразны. Некоторые из них разработаны давно и детально и широко используются. Другие только еще пробивают себе дорогу. В методическом отношении всем им свойственна следующая черта — они либо позволяют решить задачи, вовсе недоступные для других методов, либо решают их совершенно оригинальным путем, кратким и эффективным.
Отнюдь не претендуя на полноту описания всех практических применений поляризации света, мы ограничимся только примерами из разных областей деятельности, иллюстрирующими широту применения и полезность этих методов.
Светотехника. Одной из важных повседневных задач светотехники является плавное изменение и регулировка интенсивности световых потоков. Решение этой задачи с помощью пары поляризаторов (например, поляроидов) имеет ряд преимуществ перед другими методами регулировки. Интенсивность может плавно изменяться от максимальной (при параллельных поляроидах) практически до темноты (при скрещенных). При этом интенсивность меняется одинаково по всему сечению пучка и само сечение остается постоянным. Поляроиды могут быть изготовлены большого размера, поэтому такие пары употребляются не только в лабораторных установках, фотометрах, в секстантах или солнечных очках, но и в иллюминаторах пароходов, окнах железнодорожных вагонов и т. п.
Поляроиды могут использоваться также в системах световой блокировки, т. е. в таких системах, которые пропускают свет там, где нужно, и не пропускают там, где не нужно. Пример — светоблокировка автомобильных фар. Если на фары и смотровые стекла автомобилей поставить поляроиды, ориентированные под 45° вправо к вертикали, то поляроиды на фарах и смотровом стекле данного автомобиля будут параллельны. Следовательно, шофер будет хорошо видеть дорогу и встречные машины, освещаемые собственными фарами. Но поляроид, фар встречных автомобилей будут скрещены с поляроидом смотрового стекла данного автомобиля. Поэтому слепящий свет фар встречного автомобиля будет погашен. Несомненно, это сделало бы ночную работу шоферов значительно проще и безопаснее.
Другой пример поляризационной светоблокировки — световое оборудование рабочего места оператора, который должен одновременно видеть, например, экран осциллографа и какие-нибудь таблицы, графики или карты. Свет ламп, освещающих таблицы, попадая на экран осциллографа, ухудшает контрастность изображения на экране. Можно избежать этого, оборудовав осветитель и экран поляроидами с взаимно перпендикулярной ориентацией.
Поляроиды могут быть полезны тем, кто работает на воде (морякам, рыбакам и т. п.), для гашения зеркально отраженных от воды бликов, которые, как мы знаем, частично поляризованы. Поляризаторы широко применяются в фотографии для устранения бликов от фотографируемых объектов (картин, стеклянных и фарфоровых изделий и пр.). При этом можно помещать поляризаторы между источником и отражающей поверхностью, это помогает вовсе погасить блики. Такой метод полезен при освещении фотостудий, картинных галерей, при фотографировании хирургических операций и в ряде других случаев.
Погашение отраженного света при нормальном или близком к нормальному падении может осуществляться с помощью циркулярных поляризаторов. Ранее наукой было доказано, что при этом правоциркулярный свет превращается в левоциркулярный (и наоборот). Следовательно, тот же самый поляризатор, который создает циркулярную поляризацию падающего света, будет гасить отраженный свет.
В спектроскопии, астрофизике и светотехнике находят широкое применение поляризационные фильтры, позволяющие выделять из исследуемого спектра узкие полосы, а также изменять нужным образом насыщенность или оттенок цвета. Действие их основано на том, что основные параметры поляризаторов и фазовых пластинок (например, дихроизм поляроидов) зависят от длины волны. Поэтому различные комбинации этих устройств могут использоваться для изменения спектрального распределения энергии в световых потоках. Например, пара хроматических поляроидов, обладающих дихроизмом только в видимой области, в скрещенном положении будет пропускать красный свет, а в параллельном — белый. Это простейшее устройство удобно для освещения фотолабораторий.
Применяемые для астрофизических исследований поляризационные фильтры содержат довольно большое число элементов (например, шесть поляризаторов и пять чередующихся с ними фазовых пластинок с определенной ориентацией) и позволяют получать достаточно узкие полосы пропускания.
Множество новых материалов все более прочно входят в наш обиход. Речь идет не только о каких-то компьютерных или иных высоких технологиях. Справедливости ради следует отметить, что в современные мешки для мусора 100л можно помещать как отходы, так и сыпучие субстанции для переноса и временного хранения. Мешки обладают достаточно высокой прочностью, благодаря чему находят широкое применение на продовольственных и химических складах. Многие хозяйственники уже оценили достоинства данных изделий и активно применяют их как в складских, так и в бытовых нуждах.
Источник
Что такое поляризация света, кто придумал и как получить поляризованный свет
В современном мире любое применение должно обосновываться экономической эффективностью, удобством, простотой. Поляризация света все чаще встречается в жизни человека. На ее основе работает большинство приборов и устройств.
Что такое поляризация света
Термин поляризации дает оценку поперечных волн. Представляет состояние вектора колеблющейся величины в плоскости, поперечной направленности распространения волны.
Если тенденции колебаний светового вектора упорядочены, то освещение именуется поляризованным.
Колебания одинаковой частоты электромагнитных излучений могут иметь поляризирование:
- Линейную. Она перпендикулярно направлена распространению волны.
- Круговую. В связи с тенденцией верчения вектора индукции, поляризация правая либо левая.
- Эллиптическую. Возникает в промежутке с круговой и линейной поляризациями.
Кто открыл явление и что оно доказывает
В первый раз эксперименты согласно поляризации света поставлены в 1690 г Гюйгенсом (голландский ученый). Суть эксперимента в том, что ученый пропустил через исландский шпат световое излучение. При этом происходит поперечная анизотропия луча.
Данное проявление получило название парное лучепреломление. Если кристаллик вращать сравнительно тенденции начальной полупрямой, так крутятся тот и другой луч при выходе из кристалла.
В 1809 г. французский инженер Малюс Э. открывает закон, после названный в его честь. В его экспериментах освещение поочередно пропускается посредством двух одинаковых пластин турмалина. Сияние направлялось вертикально плоскости кристалла турмалина, вырезанного параллельно зрительной оси. Если луч на своем пути встречает два препятствия в виде кристаллов турмалина, то насыщенность прошедшего луча, изменяется от альфа угла между осями по закону Малюса и выражается:
Шотландский физик Никол Уильям изобрел в 1828 году поляризатор. Это прибор для получения линейно-поляризованного света (призма Никола). Через одиннадцать лет осуществил совмещение таких призм в единый прибор, что широко применяется и сегодня.
Откуда берется
Световой поток, который попадает в наше окружение, в основном неполяризован. Излучение от солнца, лампочек – свет, где вектор колеблется в разных направлениях. Если работа за компьютером и монитор жидкокристаллический, то в нем поляризованный источник.
Чтобы видеть поляризованный свет, надо естественный поток пропустить через анизотропную сферу. Она и есть поляризатор, который отрезает ненужные направления колебаний, сохраняя одно.
В числе поляризаторов применяются кристаллы. Одним из природных, часто применяемых – турмалин.
Еще методом извлечения поляризованного потока излучения является отражение с диэлектрика. Если луч опускается в рубеж области 2-ух сфер, поток делится на отображенный и надломленный. Лучи получаются отчасти поляризованными, при этом степень поляризации находится в зависимости от угла падения.
Как получить
Таким образом получить поляризование светового потока можно тремя способами:
- Отражением от диэлектриков. Где степень зависит от угла падения и степени преломления.
- Пропустить поток сияния через анизотропную среду. Луч, направленный на толстый кристалл, получит параллельное разъединение на выходе.
- Поляризатор (призма Николя).
Рекомендуем посмотреть видео на тему “Закон Малюса”.
Практическое применение явления поляризации света
Поляризование света интересно не только с научной точки зрения. Она нашла широкое применение на практике. Примеры применения:
- 3Д кинематография;
- очки от солнца с поляризацией – защищают глаза от отблесков солнца от воды и света фар встречных авто;
- фототехника – фильтры поляризационные;
- поляроиды применяются в геофизике при изучении свойств облака, при фотографировании затуманенных мест;
- поляриметры применимы в медицине при определении концентрации сахара в крови, при этом используется угол поворота плоскости поляризации.
В заключение
Поляризация света — природное явление не очень сложное для понимания человеком. Поэтому она находит широкое применение в человеческой деятельности.
Интересные факты? Оставьте комментарий, поделитесь статьей с друзьями в соцсетях.
Источник
Применение поляризованного света
а) Поляризационные светофильтры.
Свет, отраженный от воды, от других диэлектриков, содержит яркие блики, ослепляющие глаза, ухудшающие изображение. Блики, вследствие закона Брюстера, имеют поляризованную компоненту, в которой световые векторы расположены параллельно отражающей поверхности. Если на пути бликующего света поставить поляризационный светофильтр, плоскость пропускания которого перпендикулярна отражающей поверхности, то блики будут погашены полностью или частично. Поляризационные светофильтры применяют в фотографии, на перископах подводных лодок, в биноклях, микроскопах и т.д.
Это приборы, использующие свойство плоскополяризованного света поворачивать плоскость колебания в веществах, которые называют оптически активными, например растворы. Угол поворота пропорционален оптическому пути и концентрации вещества:
В простейшем случае поляриметр – это поляризатор и анализатор, расположенные последовательно в пучке света. Если их плоскости пропускания взаимно перпендикулярны, то свет не проходит через них. Помещая между ними оптически активное вещество, наблюдают просветление. Повернув на угол поворота плоскости колебаний φ анализатор, опять добиваются полного затемнения. Применяются поляриметры для измерения концентрации растворов, для исследования молекулярного строения веществ.
в). Индикаторы на жидких кристаллах.
Жидкие кристаллы – это вещества, молекулы которых либо имеют форму нитей, либо плоских дисков. Даже в слабом электрическом поле молекулы ориентируются, и жидкость приобретает свойства кристалла. В жидкокристаллическом индикаторе жидкость расположена между поляроидом и зеркалом. Если поляризованный свет проходит в области электродов, то на оптическом пути в две толщины слоя жидкости плоскость колебаний поворачивается на 90 о и свет не выходит через поляроид и наблюдается черное изображение электродов. Поворот обусловлен тем, что обыкновенный и необыкновенный пучки света распространяются в кристалле с разной скоростью, возникает разность фаз, и результирующий световой вектор постепенно поворачивается. Вне электродов свет выходит и наблюдается серый фон.
Многообразно применение поляризованного света. Исследование внутренних напряжений в линзах телескопов, в стеклянных моделях деталей. Применение ячейки Керра как быстродействующего фотозатвора импульсных лазеров. Измерение интенсивности света в фотометрах.
1. С какой целью на перископы подводных лодок устанавливают поляризаторы?
2. Какие действия производит фотограф с поляризационным светофильтром при установке его на объектив перед фотосъемкой?
3. Почему естественный свет при отражении от диэлектриков ли и поляризуется, а при отражении от металлов не поляризуется?
4. Изобразите ход пучков естественного света при падении на жидкокристаллический индикатор мобильного телефона в области электрического поля и вне поля.
5. Каким является свет, отраженный от индикатора наручных электронных часов, естественным или поляризованным?
6. Как расположить плоскости пропускания поляроидов на фарах и лобовом стекле автомобиля, чтобы встречные машины не ослепляли друг друга?
7. Интенсивность света, проходящего через анализатор, изменяется в два раза при повороте через каждые 90 о . Какой это свет? Какова степень поляризации света?
8. На пути естественного света расположено несколько параллельных стеклянных пластинок под углом Брюстера (стопа Столетова). Как меняется степень поляризации и интенсивность проходящего пучка света с увеличением числа пластинок?
9. На пути естественного света расположено несколько параллельных стеклянных пластинок под углом Брюстера (стопа Столетова). Как меняется степень поляризации и интенсивность отраженного пучка света с увеличением числа пластинок?
10. Плоскополяризованный пучок света под углом Брюстера падает на поверхность диэлектрика. Плоскость колебаний светового вектора поворачивается, Как зависит интенсивность от угла между плоскостью падения и плоскостью колебаний светового вектора?
11. Если смотреть на светящуюся точку через двоякопреломляющий кристалл исландского шпата, то видно две точки. Как меняется их взаимное расположение, если поворачивать кристалл
12. Если узкий пучок света проходит через двоякопреломляющий кристалл, то из него выходят два пучка света. Как доказать, что это поляризованные взаимно перпендикулярно пучки?
13. Если узкий пучок света проходит через двоякопреломляющий кристалл турмалина, то из него выходят два пучка света. Как узнать, который из них обыкновенный, а который необыкновенный пучок света?
14. Блики света от лужи слепят глаз. Как должна быть расположена плоскость пропускания света поляризационных очков относительно вертикали?
15. Объясните способ получения объемного изображения на плоском экране в стереокинотеатре.
16. Объясните, для чего в микроскопах применяют поляризационные светофильтры?
17. Как доказать, что луч лазера является плоскополяризованным светом. Почему лазер вырабатывает плоскополяризованный свет?
18. Как следует расположить оптическую ось двоякопреломляющего кристалла, чтобы обыкновенный и необыкновенный пучки света распространялись после прохождения совместно?
19. Обыкновенный и необыкновенный пучки света распространяются в кристалле совместно с различными скоростями Vо Vе
Дата добавления: 2014-01-04 ; Просмотров: 1546 ; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник