Меню

Физика точечный источник света что это



Точечный источник

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Фотометри́ческая величина́ — аддитивная физическая величина, определяющая временно́е, пространственное, спектральное распределение энергии оптического излучения и свойств веществ, сред и тел как посредников переноса или приемников энергии.

Асфери́ческими называют линзы, одна или обе поверхности которых не являются сферическими.

Интерфере́нция в тóнких плёнках – явление, которое возникает в результате разделения луча света при отражении от верхней и нижней границ тонкой плёнки. В результате возникают две световые волны, которые могут интерферировать. Тонкоплёночная интерференция объясняет цветовую палитру, видимую в свете, отраженном от мыльных пузырей и масляных плёнок на воде. Это явление также является основополагающим механизмом, используемым в объективах камер, зеркалах, оптических фильтрах и антибликовых покрытиях.

Согласно классической теории дифракции, луч света от удаленного источника, попадая в круглый окуляр, формирует изображение, состоящее из ряда светлых и темных концентрических полос вокруг яркой центральной точки, — так называемую дифракционную картину. Законы оптики говорят нам, что реальный источник света в нашем восприятии будет размыт, и такое размытие наблюдается в любом оптическом приборе. Если мы наблюдаем два близких источника света, их размытые образы накладываются один на другой. Рэлей как.

Дифференциальная интерференционно-контрастная микроскопия (интерференционно-контрастная микроскопия или микроскопия Номарского) — световая оптическая микроскопия, используемая для создания контраста в неокрашенных прозрачных образцах. ДИК-микроскоп позволяет определить оптическую плотность исследуемого объекта, используя интерференцию света, и таким образом увидеть недоступные глазу детали. Относительно сложная оптическая система позволяет создать чёрно-белую картину образца на сером фоне. Это изображение.

Фотоны, которые мигрируют в биологических тканях могут быть описаны при помощи численного моделирования методом Монте Карло или аналитическим уравнением переноса излучения (УПИ). Однако, УПИ трудно решается без применения упрощений (приближений). Стандартным методом упрощения УПИ является диффузионное приближение. Общее решение уравнения диффузии для фотонов получается быстрее, но менее точно чем методом Монте Карло.

Источник

§ 69. Точечные источники света

Все вопросы, связанные с определением световых величин, особенно просто решаются в том случае, когда источник излучает свет равномерно во всех направлениях. Таким источником является, например, раскаленный металлический шарик. Подобный шарик посылает свет равномерно во все стороны; световой поток от него распределен равномерно по всем направлениям. Это означает, что действие источника на какой-либо приемник света будет зависеть только от расстояния между приемником и центром светящегося шарика и не будет зависеть от направления радиуса, проведенного к приемнику из центра шарика.

Во многих случаях действие света изучается на расстоянии , настолько превосходящем радиус светящегося шарика, что размеры последнего можно не учитывать. Тогда можно считать, что излучение света происходит как бы из одной точки — центра светящегося шара. В подобных случаях источник света называется точечным источником.

Само собой разумеется, что точечный источник не является точкой в геометрическом смысле, а имеет, как и всякое физическое тело, конечные размеры. Источник излучения исчезающе малых размеров не имеет физического смысла, ибо такой источник должен был бы с единицы своей поверхности излучать бесконечно большую мощность, что невозможно.

Более того, источник, который мы можем считать точечным, не всегда должен быть малым. Дело не в абсолютных размерах источника, а в соотношении между его размерами и теми расстояниями от источника, на которых исследуется его действие. Так, для всех практических задач наилучшим образцом точечных источников являются звезды; хотя они имеют огромные размеры, расстояния от них до Земли во много раз превосходят эти размеры.

Необходимо также помнить, что прообразом точечного источника является равномерно светящийся шарик. Поэтому источник света, посылающий свет неравномерно в разные стороны, не является точечным, хотя бы он был и очень маленьким по сравнению с расстоянием до точки наблюдения.

Читайте также:  Когда включаю ближний свет идет треск

Определим более точно, что понимается под равномерным излучением света во все стороны. Для этого надо воспользоваться представлением о телесном угле , который равен отношению площади поверхности , вырезанной на сфере конусом с вершиной в точке , к квадрату радиуса сферы (рис. 156):

. (69.1)

Рис. 156. Телесный угол равен отношению площади поверхности , вырезанной на сфере конусом с вершиной в точке , к квадрату радиуса сферы:

Это отношение не зависит от , так как с ростом вырезаемая конусом поверхность увеличивается пропорционально . Если , то численно равен , т. е. телесный угол измеряется поверхностью, вырезанной конусом на сфере единичного радиуса. Единицей телесного угла является стерадиан — телесный угол, которому на сфере единичного радиуса соответствует поверхность с площадью, равной единице. Телесный угол, охватывающий все пространство вокруг источника, равен , ибо площадь полной поверхности сферы единичного радиуса есть .

Полное излучение какого-либо источника распределяется в телесном угле . Излучение называется равномерным или изотропным, если в одинаковые телесные углы, выделенные по любому направлению, излучается одинаковая мощность. Конечно, чем меньше телесные углы, в которых мы производим сравнение мощности, излучаемой источником, тем с большей точностью мы проверяем равномерность излучения.

Итак, точечным источником является, источник, размеры которого малы по сравнению с расстоянием до места наблюдения и который посылает световой поток равномерно во все стороны.

Источник

Физика точечный источник света что это

Все вопросы, связанные с определением световых величин, особенно просто решаются в том случае, когда источник излучает свет равномерно во всех направлениях. Таким источником является, например, раскаленный металлический шарик. Подобный шарик посылает свет равномерно во все стороны; световой поток от него распределен равномерно по всем направлениям. Это означает, что действие источника на какой-либо приемник света будет зависеть только от расстояния между приемником и центром светящегося шарика и не будет зависеть от направления радиуса, проведенного к приемнику из центра шарика.

Во многих случаях действие света изучается на расстоянии R, настолько превосходящем радиус r светящегося шарика, что размеры последнего можно не учитывать. Тогда можно считать, что излучение света происходит как бы из одной точки — центра светящегося шара. В подобных случаях источник света называется точечным источником.

Само собой разумеется, что точечный источник не является точкой в геометрическом смысле, а имеет, как и всякое физическое тело, конечные размеры. Источник излучения исчезающе малых размеров не имеет физического смысла, ибо такой источник должен был бы с единицы своей поверхности излучать бесконечно большую мощность, что невозможно.

Более того, источник, который мы можем считать точечным, не всегда должен быть малым. Дело не в абсолютных размерах источника, а в соотношении между его размерами и теми расстояниями от источника, на которых исследуется его действие. Так, для всех практических задач наилучшим образцом точечных источников являются звезды; хотя они имеют огромные размеры, расстояния от них до Земли во много раз превосходят эти размеры. Необходимо также помнить, что прообразом точечного источника является равномерно светящийся шарик. Поэтому источник света, посылающий свет неравномерно в разные стороны, не является точечным, хотя бы он был и очень маленьким по сравнению с расстоянием до точки наблюдения.

Определим более точно, что понимается под равномерным излучением света во все стороны. Для этого надо воспользоваться представлением о телесном угле W, который равен отношению площади поверхности с, вырезанной на сфере конусом с вершиной в точке S, к квадрату радиуса r сферы (рис. 156):
(1)
Это отношение не зависит от л, так как с ростом r вырезаемая конусом поверхность s увеличивается пропорционально r2. Если r=1, то W численно равен s, т. е. телесный угол измеряется поверхностью, вырезанной конусом на сфере единичного радиуса. Единицей телесного угла является стерадиан (ср) — телесный угол, которому на сфере единичного радиуса соответствует поверхность с площадью, равной единице. Телесный угол, охватывающий все пространство вокруг источника, равен 4p ср, ибо площадь полной поверхности сферы единичного радиуса есть 4p.

Читайте также:  Яркая лампочка с белым светом

Полное излучение какого-либо источника распределяется в телесном угле 4p ср. Излучение называется равномерным или изотропным, если в одинаковые телесные углы, выделенные по любому направлению, излучается одинаковая мощность. Конечно, чем меньше телесные углы, в которых мы производим сравнение мощности, излучаемой источником, тем с большей точностью мы проверяем равномерность излучения.

Итак, точенным источником является источник, размеры которого малы по сравнению с расстоянием до места наблюдения и который посылает световой поток равномерно во все стороны.

по материалам пособия “Элементарный учебник физики” под ред. академика Г. С. Ландсберга.
Источник

Источник

§ 63. Источники света. Распространение света

Ещё в глубокой древности учёные интересовались природой света. Что такое свет? Почему одни предметы цветные, а другие белые или чёрные?

Опытным путём было установлено, что свет нагревает тела, на которые он падает. Следовательно, он передаёт этим телам энергию. Вам уже известно, что одним из видов теплопередачи является излучение. Свет — это излучение, но лишь та его часть, которая воспринимается глазом. В этой связи свет называют видимым излучением.

Поскольку свет — это излучение, то ему присущи все особенности этого вида теплопередачи. Это значит, что перенос энергии может осуществляться в вакууме, а энергия излучения частично поглощается телами, на которые оно падает. Вследствие этого тела нагреваются.

Тела, от которых исходит свет, являются источниками света. Источники света подразделяются на естественные и искусственные.

Естественные источники света — это Солнце, звёзды, атмосферные разряды, а также светящиеся объекты животного и растительного мира. Это могут быть светлячки, гнилушки и пр.

Естественные источники света:
а — светлячок; б — медуза

Искусственные источники света, в зависимости от того, какой процесс лежит в основе получения излучения, разделяют на тепловые и люминесцирующие.

К тепловым относят электрические лампочки, пламя газовой горелки, свечи и др.

Искусственные источники света:
а — свеча; б — люминесцентная лампа

Люминесцирующими источниками являются люминесцентные и газосветовые лампы.

Мы видим не только источники света, но и тела, которые не являются источниками света, — книгу, ручку, дома, деревья и др. Эти предметы мы видим только тогда, когда они освещены. Излучение, идущее от источника света, попав на предмет, меняет своё направление и попадает в глаз.

На практике все источники света имеют размеры. При изучении световых явлений мы будем пользоваться понятием точечный источник света.

Если размеры светящегося тела намного меньше расстояния, на котором мы оцениваем его действие, то светящееся тело можно считать точечным источником.

Громадные звёзды, во много раз превосходящие Солнце, воспринимаются нами как точечные источники света, так как находятся на колоссальном расстоянии от Земли.

Ещё одно понятие, которым мы будем пользоваться в этом разделе, — световой луч.

Световой луч — это линия, вдоль которой распространяется энергия от источника света.

Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется прямолинейно.

Прямолинейное распространение света — факт, установленный в глубокой древности. Об этом писал ещё основатель геометрии Евклид (300 лет до нашей эры).

Древние египтяне использовали закон прямолинейного распространения света для установления колонн по прямой линии. Колонны располагались так, чтобы из-за ближайшей к глазу колонны не были видны все остальные (рис. 122).

Читайте также:  Божиим светом твоим блаже утренюющих ти души

Рис. 122. Применение закона прямолинейного распространения света

Прямолинейностью распространения света в однородной среде объясняется образование тени и полутени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на Земле в солнечный день.

На рисунке 123 показана тень, полученная на экране при освещении точечным источником света S непрозрачного шара А. Поскольку шар непрозрачен, то он не пропускает свет, падающий на него. В результате на экране образуется тень.

Рис. 123. Получение тени

Тень — это та область пространства, в которую не попадает свет от источника.

Такую тень можно получить в тёмной комнате, освещая шар карманным фонарём. Если провести прямую через точки S и А (см. рис. 123), то на ней будет лежать и точка В. Прямая SB является лучом света, который касается шара в точке А. Если бы свет распространялся не прямолинейно, то тень могла бы не образоваться. Такую чёткую тень мы получили потому, что расстояние между источником света и экраном намного больше, чем размеры лампочки.

Теперь возьмём большую лампу, размеры которой будут сравнимы с расстоянием до экрана (рис. 124). Вокруг тени на экране образуется частично освещенное пространство — полутень.

Рис. 124. Получение полутени

Полутень — это та область, в которую попадает свет от части источника света.

Описанный выше опыт также подтверждает прямолинейное распространение света. Поскольку в данном случае источник света состоит из множества точек и каждая из них испускает лучи, то на экране имеются области, в которые свет от одних точек попадает, а от других нет. Там и образуется полутень. Это области А и Б.

Часть поверхности экрана окажется совершенно неосвещённой. Это центральная область экрана. Здесь наблюдается полная тень.

Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как затмения Солнца и Луны.

При движении вокруг Земли Луна может оказаться между Землёй и Солнцем или Земля — между Луной и Солнцем. В этих случаях наблюдаются солнечные или лунные затмения.

Во время лунного затмения Луна попадает в тень, отбрасываемую Землёй (рис. 125).

Рис. 125. Лунное затмение

Во время солнечного затмения (рис. 126) тень от Луны падает на Землю.

Рис. 126. Солнечное затмение

В тех местах Земли, куда упала тень, будет наблюдаться полное затмение Солнца. В местах полутени только часть Солнца будет закрыта Луной, т. е. произойдёт частное затмение Солнца. В остальных местах на Земле затмение наблюдаться не будет.

Поскольку движения Земли и Луны хорошо изучены, то затмения предсказываются на много лет вперёд. Учёные пользуются каждым затмением для разнообразных научных наблюдений и измерений. Полное солнечное затмение даёт возможность наблюдать внешнюю часть атмосферы Солнца (солнечную корону, рис. 127). В обычных условиях солнечная корона не видна из-за ослепительного блеска поверхности Солнца.

Рис. 127. Солнечная корона

Вопросы

  1. Что такое луч света?
  2. В чём состоит закон прямолинейного распространения света?
  3. Какое явление служит доказательством прямолинейного распространения света?
  4. Пользуясь рисунком 123, объясните, как образуется тень.
  5. При каких условиях наблюдается не только тень, но и полутень?
  6. Пользуясь рисунком 124, объясните, почему в некоторых областях экрана получается полутень.

Упражнение 44

  1. Какие источники света изображены на рисунке 128?

Рис. 128
На рисунке 129 изображена схема опыта по получению тени от двух источников света S1 и S2. Источник S1 — маленькая лампочка красного цвета, источник S2 — синего. Перечертите схему в тетрадь и раскрасьте рисунок. Объясните, почему опыт доказывает прямолинейность распространения света.

Рис. 129

  • При солнечном затмении на Землю падает тень и полутень от Луны (см. рис. 126). Видит ли Солнце человек, находящийся в области тени; полутени? Ответ обоснуйте.
  • Источник

    Adblock
    detector