Меню

Электрическое освещение новое время



История освещения: от костра до светодиодов и дальше

Содержание

Кому из людей не знаком страх темноты? Конечно, многие взрослые скажут: чего там бояться, темнота она и есть темнота. Но давайте попробуем вспомнить то время, когда мы были детьми: кровать с уютными подушкой и одеялом представлялась крошечным безопасным островком в море темноты. Шкаф становился проходом в неизведанное, пространство под кроватью – убежищем для монстров. Почему темнота оказывает такое влияние на большинство людей, откуда берётся страх перед ней и почему мы чем дальше, тем отчаянней нуждаемся в свете?

Некоторые исследователи полагают, что страх перед темнотой появился у людей ещё в древности как следствие жизненного опыта. Например, многие хищники ведут ночной образ жизни, а значит, вероятность быть съеденным ночью оказывается выше. К тому же наши органы чувств плохо приспособлены к условиям слабой освещённости: всё-таки человек – существо преимущественно дневное. Добавим к этому суточные ритмы, которые (если речь не идёт о привыкшем к ночному образу жизни, хотя и тут вопросов остаётся достаточно) изменяют биохимические процессы в организме, что приводит к снижению умственной активности и физических способностей. Картина получается тревожная: человек ночью весьма уязвим. Ну а где тревога – там и страх, который в современном городе кажется чем-то иррациональным, но поспорить с опытом тысяч прошлых поколений, запечатлённым в нашей ДНК, не так-то просто.

Поэтому современные города стали похожи на новогодние ёлки – в поле зрения людей постоянно находится как минимум один источник света, а чаще – намного больше. В отдельных случаях экологи даже используют понятие «светового загрязнения» для описания засветки, возникающей над крупными городами, что ещё раз подчёркивает вред от избыточного освещения.

Костёр, а с ним и свет, и тепло

Когда-то человеческие поселения были еле-еле освещены светом костров и факелов. Первым источником света для первых людей стал огонь. И дело пошло на лад: хищники остались в окружающей костёр темноте, а поселенцы вдобавок получили источник тепла для приготовления пищи.

А почему вообще костёр светит? Горение – в самом общем случае – это процесс превращения одних веществ в другие, проходящий со значительным выделением тепла. Нас же интересует конкретный случай: что происходит при взаимодействии с кислородом. Когда мы подносим горящую спичку к топливу (пускай это будут обыкновенные дрова), поверхность дерева нагревается выше температуры воспламенения, и молекулы веществ, из которых состоит древесина, вступают с кислородом в химическую реакцию. При этом снова выделяется тепло и реакция становится самоподдерживающейся – выделившееся при сгорании одной порции вещества тепло идёт на воспламенение другой.

Среди продуктов сгорания присутствует множество частиц с избыточной энергией, полученной в ходе реакции. Но долго пребывать в таком виде они не могут и стремятся вернуться в основное состояние. А поскольку энергия ниоткуда не берётся и никуда не пропадает, она испускается в том числе в виде фотонов, которые формируют как видимый свет, так и инфракрасное излучение, которое мы воспринимаем как тепло. Но здесь и кроется загвоздка. Поскольку на видимый свет приходится лишь небольшая часть излучения, световая отдача костра, факела, свечи и т.п. очень невелика.

Вплоть до XIX века, когда широкое распространение начало получать освещение электрическое, человечество использовало практически одно горение как источник света. На этом пути были перепробованы различные варианты топлива и исполнения светильников: в разное время и в разных ситуациях люди пользовались лучинами, керосиновыми и масляными лампами, свечами, газовыми фонарями. Встречались и экзотические решения. Например, индейцы использовали для освещения своих хижин высушенную рыбу-свечу с пропущенным через неё фитилём – обилие в ней жира прекрасно поддерживает горение. Собственно, поэтому эта небольшая рыбка и получила в народе такое название (по-научному же она это эвлахон или тихоокеанский талеихт).

Пробуем электричество

С приходом эпохи электричества ситуация начала меняться. Первыми электрическими лампами, вопреки расхожему мнению, стали вовсе не лампы накаливания, а угольные дуговые источники света. В таком приборе источником света выступала электрическая дуга, образовывавшаяся между двумя угольными электродами. В конце XIX века такие лампы получили широкое распространение в качестве источников уличного освещения.

Электрическая дуга появляется, когда вещество между двумя электродами под воздействием мощного электрического поля ионизируется и переходит в состояние плазмы. Но, как и в случае с горением, отдельные ионы стремятся вернуться в устойчивое энергетическое состояние, вследствие чего происходит их рекомбинация со свободными электронами, а излишек энергии испускается в виде фотонов. В зависимости от того, чем заполнено пространство между электродами – воздухом, благородными газами, парами металлов или их солей – изменяется спектр получаемого излучения.

Кстати, одним из изобретателей, отличившихся на поприще электрического света, стал наш соотечественник Павел Николаевич Яблочков, разработавший простую и эффективную конструкцию угольной дуговой лампы, в дальнейшем и названной его именем – свечой Яблочкова. Однако, Павлу Николаевичу тоже не удалось преодолеть один из самых больших недостатков таких источников света – их маленький срок службы. Большинство образцов угольных дуговых ламп горели не больше 100 часов.

Поэтому в начале XX века повсеместно стали использоваться более долговечные лампы накаливания с нитями из тугоплавких металлов, которые до сих пор, по прошествии уже более чем ста лет, всё ещё остаются весьма популярными в силу своей дешевизны и неприхотливости. Хотя первые образцы, разработанные Томасом Эдисоном ещё в 70–80-х годах XIX века использовали угольное волокно и также имели ограниченный срок службы – около 40 часов, это не помешало им получить широкое распространение и иметь коммерческий успех. Ключевым фактором для них стало удобство использования и низкая цена – в течение первых пяти лет существования фабрики Эдисона по производству ламп их цена снизилась с 1 доллара 25 центов до 22 центов за штуку.

Читайте также:  Дежурное освещение производственных помещений

Приветствуем газорязрядные лампы!

Но о дуговых, или разрядных, источниках света никто не забыл. Ещё в 90-х годах XIX века Никола Тесла запатентовал систему освещения газоразрядными лампами, наполненными аргоном. Такая лампа требовала для своей работы источника тока высокого напряжения и высокой частоты. Кстати, далёкие потомки тех первых ламп используются и по сей день, наряду с криптоновыми, ксеноновыми, неоновыми и некоторыми другими.

В дальнейшем идея развивалась, появлялись металлогалогенные, натриевые лампы, большое распространение получили лампы ртутные – которые мы используем и сейчас. Хотя первые эксперименты с парами ртути в качестве внутренней среды газоразрядных ламп показали, что свет, отдаваемый таким источником, имеет довольно низкое качество – в видимой части его спектра преобладают синие и зелёные цвета. Более того, в нём велико количество ультрафиолета, для глаза невидимого, а в больших количествах вредного для живых организмов. На этом свойстве паров ртути, кстати, основаны бактерицидные и кварцевые лампы – в них используются специальные типы стёкол, которые в большей степени пропускают ультрафиолетовое излучение, чем привычное нам силикатное стекло.

В 1926 году группа немецких инженеров во главе с Эдмундом Гермером предложила покрывать внутреннюю поверхность ртутных ламп люминофором – веществом, которое способно поглощать ультрафиолет и переизлучать свет в видимом диапазоне. Так родилась люминесцентная лампа – она же лампа дневного света. Важным преимуществом газоразрядных ламп стала, была и остаётся более высокая эффективность по сравнению с лампами накаливания – их светоотдача может на порядок отличаться. А значит, меньше энергии становится теплом и больше – светом.

Появление светодиодов

Первые промышленно значимые светодиоды появились в 60-х годах XX века. На первых порах это были источники красного (реже – жёлто-зелёного) света, которые использовались в различных индикаторах. Эффективность их оставляла желать лучшего – всего 1-2 люмена на ватт, что было чуть ли не на порядок ниже традиционных ламп накаливания. 30 лет спустя, в середине 90-х годов, этот показатель составлял уже 30, а к концу тысячелетия – уже до 60 люменов на ватт.

Светодиод – это полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Источником же света служит процесс рекомбинации, также как у рассмотренных ранее дуговых ламп, но в данном случае он идёт не между положительно заряженными ионами и электронами, а между электронами и дырками – обычными «обитателями» полупроводников. Причём излучать светодиод может только в очень узком диапазоне спектра, определяемом составом полупроводника. Поэтому для создания белых светодиодов в любом случае используются люминофоры.

Серьёзным препятствием для массового внедрения светодиодного освещения оставалась высокая стоимость, но по мере открытия новых полупроводниковых материалов и увеличения объёмов производства их цена снижалась. Хотя до сих пор светодиодные лампы обходятся дороже, чем сопоставимые им по световому потоку лампы накаливания, это с лихвой компенсируется существенно более низким энергопотреблением и на порядок большим сроком службы.

Распространённым является мнение, что газоразрядные лампы в настоящее время сменяются на светодиодные источники в силу большей энергоэффективности последних. Это тоже не совсем правда. До недавнего времени световая отдача большинства светодиодных светильников была ничуть не выше их аналогов, например, с натриевыми лампами высокого давления. Основными критериями здесь стали срок службы – чем дольше не нужно менять лампочку, тем меньше средств тратится на сам процесс замены, безопасность с экологической точки зрения – поскольку паров ртути в них нет, утилизировать светодиодный источник света можно, как любой другой электронный прибор. Но с развитием технологии световая отдача у светодиодов будет только расти, а классические газоразрядные лампы уже достигли практического предела и дальнейшие фундаментальные исследования в этой области кажутся нецелесообразными. В настоящее время перспективные образцы светодиодов, находящиеся на стадии исследовательской работы, показывают светоотдачу на уровне 250 лм/вт.

Смотрим в будущее

Что же нас ждёт в будущем? В настоящее время ведутся разработки в области органических светодиодов (OLED), но пока срок службы и характеристики не позволяют использовать их в качестве источника света. В любом случае потенциал светодиодного освещения ещё далеко не исчерпан, а значит, в ближайшие годы нас ждёт постепенное развитие этого направления с увеличением энергоэффективности и уменьшением цены.

Одним из перспективных направлений в развитии светодиодных приборов выглядит использование люминофоров на основе квантовых точек. Квантовая точка – это полупроводник, расстояние между энергетическими уровнями электронов в котором зависит от его геометрии. При переходе от одного уровня к другому испускается фотон, а значит, меняя размер квантовой точки и, соответственно, расстояние между энергетическими уровнями, мы можем менять энергию фотона, а следовательно – и частоту излучения или цвет света. Эти и некоторые другие свойства позволяют говорить о превосходстве квантовых точек над традиционными люминофорами. В настоящее время производство квантовых точек возможно в промышленных масштабах. Некоторые компании уже представили конечные продукты, в том числе и лампы, на их основе.

Читайте также:  Led освещение гаража своими руками

Источник

Все до лампочки. О прошлом и будущем ламп накаливания

31 декабря 2013 года телеканал CNN опубликовал некролог обычной лампе накаливания — в честь вступления в силу запрета на производство и импорт 40- и 60-ваттных лампочек в США. В некрологе приводились слова правнука Эдисона, Дэвида, который называл прадедушку «футуристом и „зеленым“» и отмечал, что ему пришелся бы по нраву глобальный переход на новые, более современные и экологичные источники света.

Был Томас Эдисон «зеленым» или нет, но лампочка, которой он подарил длинную коммерческую жизнь более чем на столетие, у экологов сейчас в немилости. И, кажется, если наши дети будут последними, кто увидит «вживую» работающую лампочку накаливания, никто особенно не расстроится.

Да будет свет (электрический)

Эдисоновский патент номер 223 898 — один из более чем тысячи его американских патентов. Изобретатель получил его после того, как в 1879 году создал бюджетную лампочку накаливания, которая горела аж 14,5 часа — неплохой для того времени показатель. Из этого достижения Эдисон сделал настоящее шоу. Газета New York Herald писала, что посмотреть на публичное представление диковинных ламп пришли сотни людей, несмотря на плохую погоду.

К 1880 году лампочками интересовались, кажется, все: когда в марте публичный доклад об инновациях в освещении делал инженер Александр Сименс (двоюродный брат основателя Siemens AG Вернера фон Сименса), в аудитории вместо обычного газового света установили новомодные дуговые электрические лампы.

Именно с дуговых ламп, строго говоря, начинается история электрического освещения. Светит в них электрическая дуга, возникающая между двумя электродами. Эти очень яркие лампы обходились дешевле газовых и хорошо подходили для уличного и промышленного освещения, но у них были и свои недостатки: например, стержни в угольных дуговых лампах постепенно сгорали, и их нужно было регулярно менять. Кроме того, для небольших помещений они были слишком яркими и даже пожароопасными.

Первооткрывателем электрической дуги считается россиянин Василий Петров, а первую такую экспериментальную лампу в начале XIX века представил британскому Королевскому обществу сэр Гемфри Дэви. Честно говоря, сразу опознать в таком устройстве осветительный прибор довольно трудно.

Но самой, пожалуй, известной угольной дуговой лампой стала так называемая «свеча Яблочкова», изобретенная в 1875 году русским электротехником и инженером Павлом Яблочковым. Эти дуговые «свечи» покорили Всемирную выставку в Париже в 1878 году, а за ней и улицы Лондона и других столиц.

Вопрос, кого считать первым изобретателем лампочки накаливания, непростой, и не только потому, что разные страны любят тянуть одеяло на себя в споре о приоритете. Например, шотландец Джеймс Боумен Линдси в 1835 году показал публике, по сути, как раз такую лампочку и даже почитал в ее свете книгу, но потом, похоже, переключился на другие интересы и ничего особенно не сделал для того, чтобы доработать изобретение или защитить на него права.

Русский инженер Александр Лодыгин получил в России и в нескольких европейских странах патент на лампу накаливания 11 июля 1874 года. Именно он, как считается, по крайней мере, в России, первым придумал откачивать из стеклянной колбы воздух, чтобы угольная нить в лампе сгорала медленнее. Впоследствии Лодыгин экспериментировал и с металлическими нитями накаливания, но коммерческого успеха эти разработки тогда еще не получили.

Канадский патент на лампу накаливания в том же 1874 году получили Генри Вудворд и Мэтью Эванс. Но у пары друзей не было денег на то, чтобы дальше заниматься своим изобретением, и они продали патент Эдисону. У британцев изобретателем лампы накаливания считается Джозеф Суон: свою работающую лампу, очень похожую на эдисоновскую, Суон продемонстрировал в феврале 1879 года (а патент тоже получил в 1880). Даже в самих Штатах у Эдисона были конкуренты: свой патент летом 1877 года успели получить инженеры Уильям Сойер и Элбон Мэн, которые даже основали первую в стране компанию по промышленному производству лампочек.

В 1881 году в Париже прошла Электрическая выставка, где свои лампочки представили все, кто их делал, от Эдисона и Суона до британца Хайрема Максима (того самого, который изобрел пулемет). Судя по всему, выбирать между ними было трудно, поскольку все лампочки уже были довольно сильно похожи друг на друга.

Свой современный облик — вольфрамовая нить накаливания в виде двойной пружины, гладкая колба без типичных для XIX века «пимпочек» сверху, стандартный цоколь — лампочка обрела после 1920-х годов. К этому времени придумали экономичный способ делать тонкую вольфрамовую проволоку и решили, что воздух из колбы лучше выкачивать с противоположной стороны. А стандартное резьбовое соединение для лампочек Эдисон разработал еще в 1909 году.

Если подходить к обычной лампе накаливания строго и занудно, то это не осветительный прибор, а нагревательный: всего 5% потребляемой энергии лампа выдает в виде света, остальное уходит в тепло. И «обогревать» лампочками помещение, если это не аквариум с черепашкой, выходит довольно дорого.

Читайте также:  Расчет наружного освещения промышленных предприятий

Экономия энергии на лампочках полезна не только для кошелька, но и для климата Земли, который меняется из-за деятельности человека. Именно поэтому крупнейшие производители лампочек вместе с экоактивистами и даже правительствами стран объединились в Global Lighting Challenge — глобальную кампанию по замене 10 миллиардов лампочек на светодиодные. Пока заменили «всего» 187,5 миллиона, причем при желании вы можете через сайт «зарегистрировать» и свои люстры или светильники в подъезде.

Кроме того, лампочки накаливания недолговечны: сейчас стандартный срок их жизни составляет около 1000 часов против нескольких десятков тысяч часов у конкурентов — люминесцентных и светодиодных ламп. На эту тему есть целая история о картеле Phoebus, объединившем крупнейших производителей лампочек во всем мире в 1920—1930-е годы: считается, что именно там впервые придумали намеренно сделать свою продукцию короткоживущей, чтобы обеспечить на нее постоянный спрос.

Глобальная кампания против лампочек накаливания началась уже в этом столетии и за 17 лет охватила всю Северную Америку и почти всю Южную, Европу, Китай, Индию, Австралию и ЮАР. Наша страна в своей решительности пока несколько отстает от других, но идет в том же направлении. Российское министерство энергетики летом 2016 года предложило запретить в стране оборот лампочек мощностью 60 и 75 ватт (напомним, запрет на 100-ваттные лампочки действует в России с 2011 года). По данным Минэнерго, в 2014 году россияне купили где-то 168 миллионов таких лампочек — против 110 миллионов современных светодиодных ламп. Вернуться к этой идее министерство обещает в феврале-марте нынешнего года.

Пока российское Минэнерго рассуждает, пора ли сжимать кольцо вокруг неэффективных ламп, в США действуют решительнее. В мае прошлого года национальное министерство энергетики предложило после 2020 года перейти исключительно на светодиодное освещение, отказавшись не только от старых ламп накаливания, но и от люминесцентных «спиралек». Последние не понравились рядовым американским потребителям настолько, что компания General Electric даже закрывает их производство в Штатах.

Запреты, конечно, обходят во всех странах: лампочки из 100-ваттных, как по волшебству, превращаются в 99-ваттные, самые мощные из них «переквалифицируются» из осветительных приборов в нагревательные, а в США, например, сначала никто и не думал запрещать так называемые трехступенчатые лампочки накаливания с регулировкой яркости, особенно популярные в гостиницах. Но чем будет освещаться светлое будущее, все равно понятно.

Новые старые лампочки

В 2010 году, по оценкам Международного энергетического агентства, в мире все еще продавалось 12,5 миллиарда ламп накаливания в год. Но сила рынка неумолима: быстро дешевеющие альтернативы, прежде всего светодиодные, гасят своих устаревших конкурентов. К 2020 году светодиодные лампы, как считается, могут сравняться в розничной цене не только с флуоресцентными, но и с последними «живыми» на тот момент лампами накаливания, и тогда их наступление уже ничто не остановит, радуются эксперты.

Или все-таки нет? Год назад сотрудники MIT опубликовали в журнале Nature Nanotechnology статью о том, как им удалось увеличить световую эффективность лампы накаливания — то, насколько хорошо источник света производит свет, видимый человеческому глазу. Для этого часть тепла, которое при работе лампы терялось во внешнюю среду, перенаправили на ее нагрев — с помощью фотонных кристаллов. В теории так можно увеличить световой КПД лампы до невиданных 40% — с нынешних 2%!

Пока прототип, созданный учеными, «всего» в три раза эффективнее обычных лампочек, что, однако, уже сопоставимо с некоторыми энергоэффективными конкурентами. Но ученые подчеркивают: они не пытались сделать новую лампочку, а экспериментировали с технологиями, и их работа пока очень далека от практики и тем более от магазинных прилавков.

Посреди всего этого прогресса и даже несколько вопреки ему в пожарной части калифорнийского города Ливермор до сих пор горит лампочка, впервые вкрученная в 1901 году, еще при жизни Эдисона. «Столетняя лампа», как ее называют, за миллион с лишним часов горения несколько раз переезжала и пережила всех, кто ее вкручивал, 20 президентов США и три веб-камеры, установленные для того, чтобы все желающие могли следить за ее состоянием (последняя пока работает). Возможно, это единственная работающая лампа накаливания, которая вполне могла бы претендовать на звание «лампочки Ильича»: в конце концов, когда ее сделали вручную, Ленину едва исполнилось 30.

Повторить дома такой рекорд вряд ли получится: для этого, по-видимому, нужна «непростая» лампочка компании Shelby Electric, основанной инженером Адольфом Шайе. Большинство исследователей таких лампочек склоняются к тому, что секрет долгожительства калифорнийской «столетней лампы» — в более толстой углеродной нити накаливания. Кроме того, эту лампочку крайне редко выключали, что тоже «полезно для здоровья»: активное включение и выключение сокращает срок работы ламп накаливания.

Возможно, по-настоящему некрологи лампе накаливания понадобятся тогда, когда наконец перегорит эта «неопалимая» лампочка. Правда, неофициальный представитель лампочки (и администратор сайта) Стив Банн сказал «Чердаку», что лампочка, по мнению тех, кто ее бережет, проработает еще пару столетий. На всякий случай у пожарной части есть еще одна лампочка-ровесница Shelby, но вкрутят ли ее, если что, или заменят на светодиодную — «дело будущих поколений».

Ольга Добровидова

Источник