Меню

Экологические факторы свет влага



Абиотические факторы среды: свет и влажность

Среди абиотических факторов наибольшее значение имеют климатические факторы: свет, влажность и температура.

Свет. Солнечное излучение — основной источник энергии для большинства организмов планеты. Автотрофные растения используют солнечный свет для построения клеток и тканей. Они преобразуют энергию света в энергию химических связей АТФ, используемых для синтеза органических соединений. В дальнейшем энергия зеленых растений перераспределяется между другими организмами в соответствии с пищевыми отношениями. На синтез биомассы используется до 1% поступающей на Землю солнечной энергии.

В солнечном свете важны три спектральных диапазона, различающихся по биологическому воздействию: ультрафиолет, видимый и инфракрасный свет.

Ультрафиолет с длиной волны менее 0,29 мкм вызывает интенсивную денатурацию биополимеров и губителен для всего живого. Он задерживается озоновым слоем атмосферы, поверхности земли достигает лишь небольшая часть ультрафиолетовых лучей (0,3-0,4 мкм), в небольших количествах полезных животным и человеку. Без них растения приобретают чрезмерно вытянутую форму. Под их воздействием образуется витамин D.

Видимый свет состоит из голубых, зеленых, оранжевых и красных лучей (0,4-0,75 мкм) и составляет большую часть лучистой энергии. Зеленые растения осуществляют фотосинтез органических соединений за счет энергии видимой части спектра. Видимые лучи свободно проходят сквозь облака и воду, поэтому фотосинтез возможен и в пасмурную погоду, и в водоемах на глубине в десятки и сотни метров (у красных водорослей).

Наиболее благоприятны оранжево-красные лучи (0,6-0,7 мкм). Сине-фиолетовые лучи (0,4-0,5 мкм) поглощаются хлорофиллом, каротиноидами и другими компонентами клетки, но они вдвое менее эффективны, чем оранжево-красные. Наименьшую биологическую активность имеют зеленые лучи (0,5-0,6 мкм), они не поглощаются растениями, и большинство растений имеют зеленый цвет.

Инфракрасные лучи (более 0,75 мкм) не воспринимаются глазом человека, но на их долю приходится до 40% общего количества лучистой энергии. Они согревают растения и животных, хорошо поглощаются почвой и водой. Существенная часть инфракрасных лучей, поступающих от Солнца, а также собственное тепловое излучение Земли поглощаются углекислым и некоторыми другими газами, повышая температуру атмосферы и создавая парниковый эффект.

В зависимости от требовательности к количеству света растения могут быть светолюбивыми (хлебные злаки, береза) или теневыносливыми (лесные кустарники, мхи), в лесу они занимают различные экологические ниши — разные ярусы леса.

Животные используют солнце для географической ориентации. Некоторые насекомые способны различать ультрафиолетовые лучи, это позволяет им успешно ориентироваться на местности в облачную погоду. В связи с суточным световым ритмом у большинства животных активность приходится на дневное время, лишь некоторая часть организмов приспособлена к ночному образу жизни — они занимают свою экологическую нишу.

Хемотрофные и часть гетеротрофных организмов способны обходиться без света, они обитают в глубоких слоях почвы, пещерах и океанических глубинах. Для большинства организмов свет необходим, они приспособлены к определенному режиму освещенности. Для существ важны не только длина волны и интенсивность света, но и продолжительность его воздействия.

Фотопериодизм. Весной в организмах включаются физиологические процессы, приводящие к росту и цветению растений, у птиц просыпаются гнездовые инстинкты. С приближением осени растения сбрасывают листву, животные линяют и накапливают жир, птицы сбиваются в перелетные стаи, у насекомых наступает стадия покоя. Сигналом для всех этих изменений служит продолжительность дня, с астрономической точностью определяющая время года. Реакцию организмов на продолжительность дня называют фотопериодизмом.

Читайте также:  Как будет выражаться конец света

Если сеянцы березы искусственно освещать более 15 часов в сутки, то они растут непрерывно, если же продолжительность облучения снизить до 10-12 часов, сеянцы сбрасывают листья и переходят в состояние зимнего покоя даже в очень теплом помещении. Изменение окраски и опадание осенних листьев происходит у деревьев в жесткие календарные сроки и не обнаруживает прямой зависимости от погоды. В Европейской части России начало сентября бывает теплее конца августа, тем не менее, листопад всегда начинается в сентябре. Многие листопадные деревья средней полосы — дуб, ива, граб, бук — в южных условиях с длинным днем становятся вечнозелеными.

Насекомые даже при высокой температуре с уменьшением продолжительности дня впадают в состояние зимнего покоя. Если гусеницу бабочки-капустницы содержать в условиях длинного дня, то из куколки быстро выходит бабочка, если продолжительность освещенности сократить до 14 часов в сутки, то даже летом формируется зимующая куколка, которая не раскрывается многие месяцы.

Широко распространенные виды в разных частях ареала по-разному реагируют на продолжительность дня. Рост и развитие личинок у бабочки стрельчатки щавелевой прекращается в районе Сухуми при длине дня 14,5 часов, Витебска — 18, Санкт-Петербурга — 19,5 часов.

Следование организмов ходу собственных биологических часов имеет решающее значение для выживания. Погода зачастую оказывается обманчивой: жаркая осень вдруг сменяется заморозками, а временные похолодания могут случиться и летом, но организмы с непременностью следуют календарю. Биологические часы некоторых растений способны «отсчитывать» годы. Предпосевной обработкой холодом удается сместить стрелки биологических часов семян на год вперед и достигнуть колошения озимых при весеннем посеве, а цветения и плодоношения двулетних растений — уже в первый год.

Изучение фотопериодизма в жизнедеятельности организмов позволило увеличить эффективность использования одомашненных растений и животных. При искусственном освещении в теплицах круглогодично выращиваются овощи, цветы, рассада, повышается яйценоскость на птицефермах.

Фотопериодизм у людей выражается в большей оптимальной продолжительности сна зимой (на 1-2 часа). Эта разница увеличивается при перемещении к полюсу (т.е. с удлинением ночи) и практически не зависит от климата.

Влажность. Биохимические реакции в клетках протекают в водной среде. Вода — прекрасный растворитель, она идеально приспособлена для транспорта питательных веществ, гормонов и вывода продуктов обмена. Поэтому регуляция количества воды в живых организмах составляет их важнейшую физиологическую функцию.

От наличия воды в экосистеме зависит характер ее флоры и фауны. При избытке воды развивается болотная растительность, а ее недостаток формирует пустынный ландшафт. Уровень влажности определяет интенсивность воздействия температурного фактора. Если влажность слишком низка или высока, температура оказывает особенно сильное влияние, а при оптимальной влажности существам легче переносить температуры, близкие к пределам выносливости.

Для обитания в засушливых условиях организмы имеют специальные приспособления. У засухоустойчивых растений развита корневая система (длина корней верблюжьей колючки достигает 16 м), многие из них имеют густое о пушение, толстый восковой слой, препятствующие испарению. Саксаул в жаркий период утрачивает листья, осуществляя фотосинтез в зеленых стеблях; влаголюбивые растения в подобных условиях увядают и гибнут. Пустынные животные в качестве источника влаги запасают жир, при окислении которого образуется большое количество воды.

Источник

Влажность, свет и температура — основные абиотические факторы. Их влияние на организм животных и растений

Для существования живых организмов наибольшее значение имеют такие абиотические факторы, как температура, влажность и свет.

Читайте также:  Замена ламп ближнего света тойота превия

Температура

Температура на земной поверхности зависит от географической широты и высоты над уровнем моря. Кроме того, она меняется по сезонам года. Постоянные перемены делают температуру крайне важным абиотическим фактором. В связи с этим у животных и растений существуют различные приспособления к температурным условиям.

У большинства организмов процессы жизнедеятельности протекают в пределах от -4°С до +40…45°С. Этим объясняется скудность жизни в арктических областях и условиях тундры.

Для каждого вида характерна своя оптимальная температура и крайние пределы выживания, при которых протекают процессы жизнедеятельности. Выработались они в процессе отбора, в связи с условиями существования.

Большинство морских беспозвоночных очень чувствительны к изменениям температуры и выдерживают ее повышение лишь до 30°С и редкие из них — до 38°С. Они обитатели крупных водоемов, не подвергающихся перегреванию, поэтому у них не возникло приспособления к выживанию при высокой температуре.

Значительно более широкий диапазон выносливости к изменениям температуры у обитателей мелких пресных водоемов. Они могут выдерживать как промерзание водоема, так и нагревание до 41-44°С.

Пойкилотермные (холоднокровные) организмы

У многих организмов (растений и всех животных, кроме птиц и млекопитающих) температура тела зависит от окружающей среды. Они получили название пойкилотермных (греч. пойкилос — разнообразный). Интенсивность жизнедеятельности и темпы развития у них зависят от температурных условий.

Благоприятная температура для развития лугового мотылька ограничена от 25°С до 32°С; выше 35°С начинается гибель всех стадий его развития, а ниже 10°С развитие останавливается. Знание интенсивности развития тех или иных организмов при различных температурах важно для проведения мероприятий по борьбе с насекомыми-вредителями сельского хозяйства или переносчиками возбудителей болезней.

Представители пойкилотермных (холоднокровных) организмов

Хотя температура пойкилотермных организмов обусловлена температурой окружающей среды, все же и они имеют некоторые механизмы ее изменения в своем теле. Растения могут избегать перегрева, регулируя испарение с листовой поверхности путем автоматического открывания и закрывания устьиц. То же достигается у животных испарением через кожные покровы и дыхательные пути.

Цветы многих растений на ночь и в ненастную погоду закрываются, что предохраняет их от переохлаждения.

Во время интенсивного движения (например, при полете) у насекомых может временно повышаться температура тела на несколько градусов. Но в покое она выравнивается с температурой окружающей среды.

У некоторых общественных насекомых (например, пчел) существует способ поддержания температуры путем коллективной терморегуляции. Изолированная отдельная пчела имеет температуру окружающей среды, но пчелиная семья, состоящая из нескольких тысяч особей, выделяет столько тепла, что в улье устанавливается постоянная температура в 34-35°С, необходимая для развития личинок.

Гомойотермные (теплокровные) организмы

Наиболее совершенная терморегуляция появилась лишь у высших позвоночных — птиц и млекопитающих, обеспечив им широкое расселение во всех климатических поясах. Они получили название гомойотермных (греч. гомойос — равный) организмов.

Представители гомойотермных (теплокровных) животных

У гомойотермных животных терморегуляция осуществляется изменением окислительно-восстановительных процессов, продуцирующих тепло, а также приспособлениями для охлаждения. У большинства млекопитающих охлаждение достигается в результате испарения пота с поверхности кожи и влаги со слизистых оболочек. Волосяной покров у млекопитающих и перья у птиц, подкожные отложения жира также обеспечивают терморегуляцию. В убежищах животных (норах, логовищах) создается своеобразный, наиболее благоприятный для них микроклимат.

У большинства птиц обычно температура около 40°С, а у млекопитающих — около 37-38°С, эта же температура обычно поддерживается как в условиях высокой температуры окружающей среды, так и на морозе. Однако у молодых животных иногда еще несовершенны механизмы терморегуляции и они на первых порах нуждаются в материнском тепле. Несовершенны механизмы терморегуляции у низших млекопитающих — яйцекладущих и сумчатых, температура тела которых подвержена изменениям в связи с изменениями в окружающей среде.

Читайте также:  Какие лампочки ближнего света лучше для гранты

Влажность

Без воды жизнь невозможна. Влага — один из важнейших абиотических факторов. Большинство растений и животных влаголюбивы, поэтому у обитателей засушливых мест выработался ряд приспособлений для существования в условиях водного дефицита. Растения степей и пустынь (ксерофиты) могут иметь видоизмененные листья (колючки у кактуса) или совсем быть лишены листвы (саксаул). Некоторые имеют очень глубокие корни (например, верблюжья колючка — до 16м).

Ксерофиты — растения, которые приспособились к жизни в условиях засухи

У ковыля листья складываются в трубочки, устьицами внутрь, чем уменьшается испарение. Испарению препятствуют и такие приспособления, как плотная кутикула, восковой налет, выросты кожицы — волоски на поверхности листьев.

Особую группу ксерофитов составляют суккуленты, запасающие воду в дождливый период и затем медленно расходующие ее во время засухи. Они имеют мясистый стебель и листья (молодило, очиток, кактусы, агавы).

Наконец, растения-эфемеры имеют короткий вегетационный период (шафран, гусиный лук, тюльпан, мак) и весной до наступления засушливого периода успевают отцвести, образовать семена, запасти питательные вещества в луковицах, корневищах, клубнях.

Большинство животных — обитателей пустынь — может обходиться без воды, получая ее с пищей или на безводный период запасая много жира, при окислении которого в организме образуются молекулы воды; некоторые впадают в летнюю спячку (грызуны, черепахи). Многие обитатели пустынь на день прячутся в норах, спасаясь от жары и потери влаги. Крупные млекопитающие пустынь (кулан, сайгак) могут совершать миграции на дальние расстояния в поисках воды.

Свет — важнейший абиотический фактор, с которым связана вся жизнь на Земле. В спектре солнечного света выделяют три биологически неравнозначные области:

  • Ультрафиолетовая;
  • видимая;
  • инфракрасная.

Спектр света

Ультрафиолетовые лучи губительны для всего живого. Жизнь на поверхности Земли возможна благодаря озоновому экрану, который не пропускает основную массу этих лучей. Небольшие их количества, достигающие земной поверхности, необходимы для жизни. С ними, в частности, связан синтез витамина D в организме человека и животных.

Видимые лучи особенно необходимы для жизни. Они используются зелеными растениями для фотосинтеза. Большинство животных хорошо различают эти лучи, без них невозможна ориентировка в пространстве с помощью зрения. Развитие цветового зрения повлекло в процессе естественного отбора к формированию различной окраски у животных, часто имеющей покровительственное значение и окраски у цветов, привлекающей к себе насекомых-опылителей.

Инфракрасные лучи наиболее богаты тепловой энергией. Они, поглощаясь тканями животных и растений, вызывают их нагревание. С ними связана интенсивность физиологических процессов у растений и пойкилотермных животных.

Характер освещения имеет суточную и сезонную периодичность. В связи с этим у различных видов животных возникла приспособленность к активной жизнедеятельности в различное время суток.

Почти все физиологические процессы у растений и животных имеют суточный ритм. Люди это ощущают при быстром перемещении (например, на самолете) из одного часового пояса в другие. Реакция животных и растений на продолжительность светового дня и ночи известна как фотопериодизм.

Источник