Меню

Драйвер для дальнего света



DRL контроллеры (ДХО-контроллеры). Общая информация

Что такое DRL controller?

DRL controller (или ДХО контроллер) — это устройство, которое автоматически включает фары автомобиля.

ДХО контроллер включает только фары. Габаритные огни, подсветка номера и приборов при этом не включаются. При включении габаритных огней (в темное время суток), ДХО контроллер прекращает свою работу. Также, с помощью ДХО контроллера можно задать яркость свечения лампочек. Пониженная яркость снижает нагрузку на генератор, тем самым позволяя экономить топливо и в меньшей мере влиять на динамику автомобиля.

[Иногда под «дхо-контроллером» понимают устройство, которое управляет работой дополнительно устанавливаемых дхо-фар. Все ДХО-контроллеры, представленные на нашем сайте, не требуют установки дополнительной оптики. Наши контроллеры подключаются непосредственно к штатным галогенным лампам дальнего или ближнего света, либо же к лампам противотуманных фар].

Основные функции ДХО контроллеров

  • Автоматическое включение фар. ДХО контроллер автоматически включит ближний или дальний свет фар после запуска двигателя. Процесс запуска отслеживается по сигналу на входе «Включение», либо по напряжению в бортовой сети автомобиля.
  • Регулировка яркости. В DRL контроллерах предусмотрена регулировка яркости. Пониженная яркость снижает нагрузку на генератор и позволяет не слепить водителей встречных авто при подключении к лампам дальнего света.
  • Задержка включения фар в режиме ДХО. ДХО контроллер можно настроить таким образом, чтобы фары в режиме ДХО включались не сразу после запуска двигателя, а спустя некоторое время. Задержка включения может быть полезна в случаях если Вы пользуетесь дистанционным запуском двигателя или регулярно прогреваете двигатель перед началом движения.
  • DRL controller не влияет на работу штатного оборудования. При включении габаритов, ДХО контроллер прекращает работу, тем самым не оказывая влияния на работу ближнего или дальнего света фар в темное время суток. Если на автомобиле установлен датчик света, при его срабатывании ДХО контроллер также будет прекращать свою работу.

Подробно о возможностях каждого устройства читайте на странице описания конкретного контроллера.

Принцип работы ДХО контроллера

В основу работы ДХО контроллера положен принцип Широтно-Импульсной Модуляции (ШИМ). Этот принцип давно используется производителями автомобилей для регулировки яркости свечения подсветки приборов, скорости вращения вентиляторов и др.

На заре автомобилестроения для регулировки мощности в нагрузке применялись наборы сопротивлений и потенциометры. Эти элементы включались последовательно с нагрузкой и рассеивали часть мощности пропорционально своему сопротивлению. Уровень развития современной электроники позволяет преобразовывать мощность в нагрузке используя ШИМ практически без потерь. Например, потери в наших DRL контроллерах при работе на 2 лампочки общей мощностью 110 Ватт не превышают 1 Ватт. Другими словами, устройство остается холодным вне зависимости от выбранной яркости.

Виды DRL контроллеров

В большинстве случаев (около 95% автомобилей), лампочки в фарах включаются положительным напряжением. Этим объясняется такое разнообразие «плюсовых» контроллеров. Однако, некоторые производители используют управление «минусом» – в этом случае, при подключении используется «минусовой» контроллер.

Внешний вид ДХО контроллеров

Яркость ламп у DRL controller ‘a и DRL 2+ controller ‘a регулируется подстроечным резистором с обратной стороны корпуса.

Все настройки Mах DRL 2+/- controller ‘ов и устройств Start-Stop 3-in-1 (в режиме DRL) изменяются последовательностью импульсом на входе «Габариты» (переключателем габаритов после подключения к авто).

Самый простой – Lite DRL controller – регулируемых настроек не имеет.

Оценить возможности контроллеров можно по ниже приведенной таблице. Более подробную информацию можно найти на странице описания соответствующего устройства.

Сравнить ДХО контроллеры

Функциональные возможности контроллеров

1 сек

1 сек

Название (V2)START-STOP 3-in-1 (DRL) (V3)Max DRL 2+ controller (V2)Max DRL 2- controller DRL 2+ controller
Выходы контроллера 4+ 2+ 2- 2+
Макс. мощность нагрузки 300 Вт 150 Вт 150 Вт 130 Вт
Регулировка яркости 5. 100%
(шаг 5%)
5. 100%
(шаг 5%)
10. 100%
(шаг 5%)
10. 100%
(плавно)
Задержка включения 0. 6 мин 0. 6 мин 0. 5 мин
Задержка выключения 0. 60 сек 0. 60 сек 0. 60 сек
Плавность розжига/затухания ламп 0. 20 сек 0. 20 сек 0. 30 сек 0.3 сек
Включение контроллера
• по напряж. на входе «Включение» (>4В)
• по напряж. борт. сети x
• по импульсам (с датчика скорости) x x x
• логическим «0» x x x
Полярность входа «Габариты» «+», «-« «+» «+» «+»
Режим «ON/OFF» (вкл/выкл контроллер) x
Режим «DIMMER»
(яркость при габаритах)
x
Режим «GO_HOME+»
(проводить домой)
GO_HOME+ GO_HOME+ x
Электронная защита выходов x x
Звуковой генератор (BUZZER) x x x
Вход блокировки (отключения питания) x x x
Внешний предохранитель x
Цена руб. 1200 руб. 1200 руб. 1100 руб.

Все контроллеры, представленные на нашем сайте, изготовлены из качественных современных комплектующих. Именно поэтому устройства имеют миниатюрные размеры, при этом не греются и могут быть установлены практически в любом удобном месте.

Подобрать ДХО-контроллер по модели авто можно в нашем каталоге.

Источник

Блоки управления ДХО

Код товара: tornado-cnt-DHO

Контроллер автомобильного света ДХО (дальний/ближний в пол канала) Торнадо-ДХО

Наличие: На складе

Контроллер автомобильного света дальний/ближний в пол каналаТребуется выбрать по какому принципу буд..

Код товара: TDRL_Dimmer

Блок (реле) управления дневными ходовыми огнями режим автоматичского Вкл/выкл + притухание.

Наличие: На складе

Блок (реле) управления дневными ходовыми огнямиУниверсальный блок автоматического включения ДХО (DRL..

Код товара: 500.0034.000

Реле управления ДХО с поворотниками

Наличие: Нет в наличии

Реле для подключения дхо с функцией поворотника (TDRL) к проводке автомобиля.При подключении к ДХО (..

Код товара: 015.0002.000

Контроллер дневных ходовых огней, режим автоматического включения и выключения

Наличие: На складе

Блок (реле) управления дневными ходовыми огнямиУниверсальный блок автоматического включения ДХО (DRL..

Код товара: 015.0001.000

Блок стробоскопа — 2 Выхода

Наличие: На складе

Блок стробоскопа — 2 ВыходаСтробоскоп, блок позволяющий управлять лампами , переделывая их в стробос..

Код товара: 015.0001.001

Стробоскоп в стоп сигнал GS 100A

Наличие: Нет в наличии

Блок стробоскопа для стоп сигнала GS-100AКонтроллер стоп сигнала, блок позволяющий управлять ла..

Контроллер или блок управления ДХО

С лужит для автоматического включения и выключения дневных ходовых огней а так же управления дальним или ближним светом фар (дальний в пол канала). Главная особенность это простота установки и долговечность прибора. Устанавливая блок управления дхо либо контролле р фар вы экономите на лампах автомобиля, топливе а главное получаете полный заряд аккумуляторной батареи так как нет нагрузки на аккумулятор автомобиля. Отличия блока управления дхо от контроллера фар в том что первый работает с диодными дхо а второй с штатными лампами фар Вашего автомобиля.

Контролеры ближнего и дальнего света фар а так же блоки управления дневными ходовыми огнями можно купить в Москве с доставкой по всей России!

Источник

Светодиодный драйвер для автомобильного светового оборудования

В настоящее время, в связи со стремлением владельцев старых автомобилей перевести световое оборудование с ламп накаливания на светодиоды, достаточно востребованными являются конструкции бюджетных драйверов для светодиодов различной мощности. Ключевым словом является «бюджетных», т.к. конструкций драйверов, выполненных на различных микросхемах, в Поднебесной выпускается видимо-невидимо. И в то же время, практически всем из них свойственны существенные недостатки, требующие квалифицированного вмешательства при их установке и подключении к ним светодиодов.

Обусловлено это тем, что светодиоды, в отличие от ламп накаливания, для своей работы требуют стабильного тока. Напряжение, падающее на светодиодах, является вторичным, справочным параметром, нужным только для подбора диапазона выходных напряжений соответствующего драйвера. Для стабилизации тока требуется его датчик, самым дешевым из которых является обычный резистивный токоизмерительный шунт (RS на Рис. 1), включаемый, как правило, между катодом светодиода и минусовой шиной питания драйвера.


Рис. 1 Схема обычного подключения светодиодов к неинвертирующему драйверу

В результате светодиод оказывается запитанным «плавающим» напряжением, не связанным непосредственно ни с плюсовой шиной питания, ни с корпусом автомобиля (являющимся минусовой шиной). А это вынуждает устанавливать драйвер в непосредственной близости от светодиодов, в наименее защищенном от влаги месте. Существуют, конечно, датчики тока плюсовой шины (например, MAX4080, MAX4081, LT494, LT1637, LT1672, LT1784, LTC2053, LTC6800, INA337 и т.п.) [1, 2]. Но вот их дефицитность и стоимость.

Кроме того, большинство драйверов имеют конфигурацию либо понижающего, либо повышающего импульсного преобразователя [3]. Для первых недопустимо, чтобы падение напряжения на нагрузке превысило минимальное питающее напряжение и наоборот для вторых.

Однако, наиболее про́клятым сочетанием является случай, когда падение напряжения на светодиодах находится в диапазоне колебаний питающего напряжения. Скажем, падение напряжения на кластере из четырех соединенных последовательно белых светодиодов с падением напряжения на каждом из них 3…3,3 В, составляет 12…13,2 В, что практически равно напряжению кислотного аккумулятора. В этом случае начинаются «танцы с бубном» с использованием конфигураций SEPIC либо Step Up-Down. Вызывает недоумение зашоренность конструкторов, напрочь выпускающих из виду такую конфигурацию, как инвертирующий преобразователь, способный обеспечить выходное напряжение независимо от значения входного. Нельзя исключить, что сдерживающим фактором может быть низкий КПД такой конфигурации, составляющий всего 60…70%.

Еще раз внимательно рассмотрим Рис. 1. Источник питающего напряжения является двухполюсником. Потребитель (светодиоды) также являются двухполюсником. В таком случае, какая принципиальная разница, как подключать друг к другу два двухполюсника. Лишь бы соблюсти правильную полярность протекания тока через светодиоды да обеспечить необходимое значение этого тока (рис. 2)!


Рис. 2 Схема подключения светодиодов к инвертирующему драйверу

При такой конфигурации драйвер инвертирует выходное напряжение относительно входного, запитывая светодиоды током отрицательной полярности. При этом анод светодиода(ов) непосредственно соединяется с массой автомобиля, а токоизмерительный шунт (RS) продолжает оставаться включенным в отрицательное плечо.

Как же такой «изврат» реализовать практически? Да еще и с использованием самых дешевых и широко распространенных компонентов. Возьмем за основу микросхему импульсного преобразователя напряжения на MC34063, стоимость которого составляет менее $0.20 (а в SMD корпусе — еще дешевле). А если поискать, то ее вообще можно выпаять бесплатно из устаревшей аппаратуры. Например, модемов, свичей, даже некоторых старых материнских плат.

Рассмотрим конфигурацию инвертирующего преобразователя (схема из даташита), сразу же умощненного внешним p-n-p транзистором, дабы не зависеть от максимально допустимого пикового тока внутреннего ключа микросхемы, составляющего всего 1,5 А (рис. 3).


Рис. 3 Базовая инвертирующая (Voltage Inverting) конфигурация импульсного преобразователя на основе микросхемы MC34063

Принцип стабилизации выходного напряжения в данной схеме основан на поддержании потенциала 5-го вывода величиной +1,25 В относительно 4-го вывода. В то же время 4, 3 и 2 выводы подключены к наиболее минусовой (выходной) шине, поскольку используются внутренние узлы самой микросхемы. Подключение этих выводов к наиболее минусовому потенциалу является важнейшим требованием, т.к. обусловлено допустимыми значениями на p-n переходах внутримикросхемных транзисторов. В то же время, это существенно ограничивает максимально возможное значение отрицательного выходного напряжения, которое в сумме со входным не должно превышать максимально допустимого значения.

Но нам-то требуется стабилизировать ток! Причем, относительно общей шины. Причем, для цепочек светодиодов, составляющих светящиеся кластеры.

Для решения поставленной цели нужно решить две взаимосвязанных задачи:

  1. отделить выходное напряжение отрицательной полярности от питающего напряжения положительной полярности, чтобы не быть завязанным на максимальное напряжение питания микросхемы, которое для инвертирующей конфигурации равно сумме их абсолютных значений и не должно превышать 40 В;
  2. обеспечить инверсию напряжения измерительного сигнала от отрицательной полярности к положительной.

Поэтому без дополнительных компонентов (усилителя падения напряжения на токовом шунте) обойтись не удастся. Используем такой же дешевый (менее $0.10 в SMD корпусе) операционный усилитель LM358. И, опять же, его можно найти забесплатно в старой аппаратуре. С его применением эти задачи решаются следующим образом (Рис. 4):


Рис. 4 Принципиальная схема инвертирующего преобразователя со стабилизацией тока

Преобразователь на DA1 и внешнем транзисторе VT1 «молотит», в первом приближении не учитывая полярности и стабильности выходного напряжения. Об этом «заботится» каскад на ОУ DA2. Он построен на известном источнике тока для заземленной нагрузки на двух ОУ (Рис. 5) [5, 6]. Микросхема DA2 запитана по минусу от выходного отрицательного напряжения, формируемого преобразователем, а по плюсу — от положительного напряжения питания микросхемы DA1.


Рис. 5 Источник тока с заземлённой нагрузкой, не требующий плавающего источника питания

Фактически, схема состоит из двух источников тока. Первый на ОУ DA2.1 преобразует опорное напряжение на токоизмерительном шунте R1 в ток, создающий на резисторе R5 падение напряжения, пропорциональное току через светодиод (их цепочку) HL1. Поскольку ОУ LM358 способен работать с сигналами на уровне минусовой шины питания и даже минусовее ее на 0,4 В, то сопротивление токоизмерительного шунта R1 выбрано всего 0,1 Ома, что при токе через светодиод 0,9 А создает падение напряжения всего 0,09 В. С этим напряжением сравнивается падение напряжения на эмиттерном резисторе R6, которое, при его номинале 91 Ом, формирует ток, равный 1 мА. Этот ток создает на резисторе R5 (играющим такую же роль, как и R1) падение напряжения 2 В, поскольку по плюсовой шине ОУ не способен работать с уровнями сигналов, приближающимися к положительному питанию менее, чем на 1,5 В как по входу, так и по выходу.

Второй ОУ на DA2.2 формирует вытекающий ток, создающий на заземленном резисторе, подключенном между общей шиной и 5-м выводом микросхемы DA1 падение напряжения, равное +1,25 В при условии соответствия тока через токоизмерительный шунт R1 = 0,9 А. Регулировка этого тока под нужное значение осуществляется подстроечным резистором R8.

Стабилитрон ZD1 является защитным, предотвращающим чрезмерное повышение напряжения питания DA2 более 32 В при обрыве светодиода (их цепочки) и в штатном режиме не влияет на роботу схемы.

Недостатком этой схемы является ограниченный диапазон выходного отрицательного напряжения, которое вместе с бортовым напряжением питания не должно превышать максимально допустимого для ОУ DA2 32 В. Если принять напряжение питания (со всякими выбросами), равным 15…16 В, то на светодиоды остается всего те же 15…16 В, что соответствует цепочке из всего 4-х белых светодиодов. Красные можно подключить и цепочкой из 6 шт., но, во-первых, они более редкие, а значит и более дорогие, а во-вторых, их светоотдача более, чем в 2 раза ниже, чем у белых.

Для обхода этой проблемы вместо ОУ DA2.2 можно применить токовое зеркало (отражатель тока) на двух транзисторах (рис. 6). Тем более, что такой уж супер-пупер стабильности вытекающего тока для светодиодов совершенно не требуется. На глаз разница в яркости будет практически незаметной. Т.о., из двух ОУ нам нужен только один. НО! Стоимость одиночного ОУ с параметрами, близкими к параметрам LM358 (например, LM321), в 5…6 раз больше стоимости LM358, особенно в корпусе SO8. Парадокс — но факт. Проще и дешевле «заглушить» один из ОУ в корпусе (лучше с выводами 1, 2, 3), чем гоняться за экзотикой и переплачивать за нее. Питание микросхемы DA2.2 теперь осуществляется выходным отрицательным напряжением преобразователя и нулем входного напряжения, что позволяет запитать цепочку светодиодов суммарным напряжением до 32 В (9 светодиодов с падением напряжения до 3,3 В на каждом в виде кластера 3х3).


Рис. 6 Принципиальная схема инвертирующего преобразователя со стабилизацией тока и повышенным падением напряжения на нагрузке

Подстроечным резистором R5 регулируется коэффициент соответствия между входным и выходным токами. Защиты в данной схеме пока нет, это дело будущего.

Что делать, если и 32 В мало? Лёгко! Запитать ОУ DA2 по нулевой шине через примитивный стабилизатор напряжения на транзисторе (VT5), стабилитроне и резисторе. Трехвыводный стабилизатор 7924 применить, в принципе, тоже можно, но он также ограничен по значению максимального входного напряжения. Тем более, что особой стабильности питающего напряжения для ОУ не требуется.

В качестве ключевого транзистора VT1 вполне можно применить P-канальный полевой транзистор (опционально — с драйвером разрядного тока на биполярном транзисторе). Кроме того, подстройку +1,25 на входе компаратора ОС можно осуществлять изменением номинала сопротивления R5. Вариант схемы с указанными изменениями и дополнениями представлен на Рис. 7.


Рис. 7 Принципиальная схема высоковольтного инвертирующего преобразователя со стабилизацией тока

Поскольку за счет применения внешнего ключевого транзистора входы самой микросхемы DA1 никаким образом с выходным отрицательным напряжением не связаны, снимается ограничение на значение формируемого отрицательного напряжения.

Драйвер по Рис. 6 был установлен для питания светодиодных ДХО на Жигули-«зубило» зятя. К сожалению, фото не сохранилось, а зять с дочкой развелся…

Но его КПД был измерен и оказался равным 84%!

Источник

Читайте также:  Елена петровна погасила свет ответы
Adblock
detector