Меню

Дисперсия света интерференция света когерентность



Дисперсия и интерференция света
презентация к уроку по физике (11 класс) по теме

Красочные иллюстрации к урокам по теме «Дисперсия света» и «Интерференция света».

Скачать:

Вложение Размер
dispersiya_i_interferenciya_sveta.pptx 2.05 МБ

Предварительный просмотр:

Подписи к слайдам:

Дисперсия и интерференция света Шабанова Галина Сергеевна Учитель физики КГКОУ «Вечерняя (сменная) общеобразовательная школа №6»

Дисперсия и интерференция света Но как чувствительное око прямо на Солнце смотреть не может, так и зрение рассуждения притупляется, исследуя причины происхождения света и разделения его на разные цвета. М.В.Ломоносов

Дисперсия . НЬЮТОН ( Newton ) Исаак (1643-1727) — английский математик, механик, астроном и физик, создатель классической механики. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Был директором Монетного двора, наладил монетное дело в Англии.

Занимаясь усовершенствованием телескопов. Ньютон обратил внимание на то. что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекающие отсюда особенности цветов, каких до того никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону). Радужную окраску изображения, даваемого линзой, наблюдали, конечно, и до него. Было замечено также, что радужные края имеют предметы, рассматриваемые через призму. Пучок световых лучей, прошедший через призму, окрашивается по краям.

Опыт Ньютона был гениально прост. Ньютон догадался направить на призму световой пучок малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в ставне. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из семи основных цветов. Ньютон тоже выделил семь цветов: фиолетовый, синий, голубой , зеленый, желтый, оранжевый и красный. Саму радужную полоску Ньютон назвал спектром.

Закрыв отверстие красным стеклом. Ньютон наблюдал на стене только красное пятно, закрыв синим стеклом, наблюдал синее пятно и т. д. Отсюда следовало, что не призма окрашивает белый свет, как предполагалось раньше. Призма не изменяет свет, а лишь разлагает его на составные части

Дисперсия — зависимость показателя преломления света от частоты колебаний (или длины волны) И.Ньютон. Белый свет состоит из семи цветов.

Зависимость цвета от частоты электромагнитной волны Бумагу разного цвета освещаем белым светом, но видим различные цвета. Пучок света Бумага Видимый цвет Причина белый красный красный красный отражается, остальные поглощаются белый зеленый зеленый Зеленый отражается, Остальные поглощаются

Цвета непрозрачных тел объясняются избирательным характером отражения света Если предмет, например лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем красной краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные же поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные.

Цвета прозрачных тел объясняются избирательным характером пропускания света . Смотрим через зеленое стекло красное стекло

В ывод: « Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости» (для них стекло имеет различные показатели преломления). Показатель преломления зависит от скорости света v в веществе. Луч красного цвета преломляется меньше из-за того, что красный свет имеет в веществе наибольшую скорость, а луч фиолетового цвета больше, так как скорость фиолетового света наименьшая. Именно поэтому призма и разлагает свет. В пустоте скорости света разного цвета одинаковы. Впоследствии была выяснена зависимость цвета от физических характеристик световой волны: частоты колебаний или длины волны. Дисперсией называется зависимость показателя преломления света от частоты колебаний (или длины волны). n – абсолютный показатель преломления с – скорость света в вакууме v – скорость света в веществе

Дисперсия света через аквариум

Дисперсия в природе Как неожиданно и ярко На влажной неба синеве, Воздушная воздвиглась арка В своем минутном торжестве! Один конец в леса вонзила, Другим за облака ушла- Она полнеба обхватила И в высоте занемогла. Ф.И. Тютчев

Это интересно Слово «радуга» имеет старославянский корень «рад», что означает «весёлый». Многие расшифровывают название этого явления природы как «райская радуга».

Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других драгоценных камней. БРИЛЛИАНТ (от франц. brillant , букв. блестящий), бездефектный ювелирный алмаз, особая искусственная огранка которого максимально выявляет его блеск. Благодаря высокой дисперсии в отраженном свете бриллиант «играет» всеми цветами радуги. Масса бриллианта измеряется в каратах (0,2 г).

Интерференция Явление интерференции наблюдается с волнами любой природы- волнами на поверхности воды, упругими (звуковыми) и электромагнитным; Явление интерференции является экспериментальным доказательством волновой природы света Основные понятия Интерференция Интерференционная картина Когерентность волн Монохроматическая волна

Глава 3. Оптика Модель 3.9. Кольца Ньютона Интерференционная картина, возникающая при отражении света от двух поверхностей воздушного зазора между плоской стеклянной пластинкой и наложенной на нее плоско-выпуклой линзой большого радиуса кривизны, называется кольцами Ньютона . Радиусы колец Ньютона зависят от длины волны λ падающего света и радиуса кривизны R выпуклой поверхности линзы. В центре картины всегда наблюдается темное пятно. Радиус r m m -го темного кольца равен где r 1 – радиус первого темного кольца. Измеряя на опыте радиусы темных колец можно определить радиус кривизны R поверхности линзы по известному значению длины волны λ. Компьютерный эксперимент является аналогом интерференционного опята Ньютона. Можно изменять длину волны λ света и радиус кривизны R поверхности линзы. На экране возникает в увеличенном масштабе картина колец Ньютона и высвечивается значение радиуса r 1 первого темного кольца. Глава 3. Оптика Модель 3.9. Кольца Ньютона Интерференционная картина, возникающая при отражении света от двух поверхностей воздушного зазора между плоской стеклянной пластинкой и наложенной на нее плоско-выпуклой линзой большого радиуса кривизны, называется кольцами Ньютона . Радиусы колец Ньютона зависят от длины волны λ падающего света и радиуса кривизны R выпуклой поверхности линзы. В центре картины всегда наблюдается темное пятно. Радиус r m m -го темного кольца равен где r 1 – радиус первого темного кольца. Измеряя на опыте радиусы темных колец можно определить радиус кривизны R поверхности линзы по известному значению длины волны λ. Компьютерный эксперимент является аналогом интерференционного опята Ньютона. Можно изменять длину волны λ света и радиус кривизны R поверхности линзы. На экране возникает в увеличенном масштабе картина колец Ньютона и высвечивается значение радиуса r 1 первого темного кольца. Глава 3. Оптика Модель 3.9. Кольца Ньютона Интерференционная картина, возникающая при отражении света от двух поверхностей воздушного зазора между плоской стеклянной пластинкой и наложенной на нее плоско-выпуклой линзой большого радиуса кривизны, называется кольцами Ньютона . Радиусы колец Ньютона зависят от длины волны λ падающего света и радиуса кривизны R выпуклой поверхности линзы. В центре картины всегда наблюдается темное пятно. Радиус r m m -го темного кольца равен где r 1 – радиус первого темного кольца. Измеряя на опыте радиусы темных колец можно определить радиус кривизны R поверхности линзы по известному значению длины волны λ. Компьютерный эксперимент является аналогом интерференционного опята Ньютона. Можно изменять длину волны λ света и радиус кривизны R поверхности линзы. На экране возникает в увеличенном масштабе картина колец Ньютона и высвечивается значение радиуса r 1 первого темного кольца. Интерференция- сложение двух когерентных волн, в следствии которого наблюдается усиление или ослабление световых колебаний в различных точках пространства

Условия интерференции Волны должны быть когерентны. Это волны, имеющие одинаковые частоты, постоянную в времени разность фаз, а колебания происходят в одной плоскости. При сложении двух когерентных волн на экране наблюдается чередование темных и светлых полос

Интерференционная картина от 2-х когерентных источников

Условие максимума Наличие максимума в точке сложения волн означает: происходит увеличение энергии. На экране наблюдается светлая полоса

Условие минимума Наличие минимума в данной точке означает: световая энергия сюда не поступает. На экране наблюдается темная полоса

Интерференция света в тонких пленках Кольца Ньютона Интерференционная картина, возникающая при отражении света от двух поверхностей воздушного зазора между плоской стеклянной пластинкой и наложенной на нее плоско-выпуклой линзой большого радиуса кривизны, называется кольцами Ньютона. Радиусы колец Ньютона зависят от длины волны λ падающего света и радиуса кривизны R выпуклой поверхности линзы. В центре картины всегда наблюдается темное пятно. Радиус r m m -го темного кольца равен где r 1 – радиус первого темного кольца. Измеряя на опыте радиусы темных колец можно определить радиус кривизны R поверхности линзы по известному значению длины волны λ .

Источник

Дисперсия света интерференция света когерентность

Дисперсия света – это явление, обусловленное зависимостью показателя преломления n от частоты ν (длины волны λ ) света

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму. Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Опыт Ньютона состоял в том, что узкий пучок солнечного света он направил на боковую грань трехгранной призмы, а при выходе пучка из противоположной боковой грани наблюдались разноцветные лучи в следующей последовательности – красный(К), оранжевый(О), желтый(Ж), зеленый(З), голубой(Г), синий(С), фиолетовый (Ф). Полученную им цветную полоску Ньютон назвал спектром.

Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

Цвет в природе

Говоря простым языком, цвет — это ощущение, которое получает человек при попадании ему в глаз световых лучей.

Свет делится на излучаемый и отраженный. В физическом смысле оба вида света представляют собой две стадии одного и того же процесса, но их информационные роли существенно отличаются. В классическом случае излучаемый источником свет представляет собой максимально широкий спектр колебаний и кажется неокрашенным. Это чисто психологическое явление – нам удобнее воспринимать привычное солнечное освещение только в качестве ненавязчивого фона, а не сплошной и повсеместной радуги.
Зато отраженный свет изначально является основным источником зрительной информации, и мы максимально приспособлены именно к его восприятию. Поверхности предметов поглощают практически все падающее на них излучение, отражая только незначительную его часть. Чем ярче выражен цвет предмета, тем уже спектр его отражения: помидор отражает только красные лучи, апельсин – оранжевые и желтые, а бумага – почти весь падающий на нее свет. Поэтому помидор выглядит ярко-красным, апельсин – оранжевым, а бумага – просто белой.

Излучаемый свет – в общем случае – это первичный свет, испускаемый источником света (солнцем, луной, светильниками и т.п.). Несмотря на то, что он является суммой множества составляющих, благодаря особенностям зрительного восприятия, излучаемый свет выглядит белым (или слегка тонированным). Соответственно, черный цвет представляет собой отсутствие света, или темноту.
Отраженный свет – это вторичный (но отнюдь не второстепенный, а скорее наоборот, наиболее важный в информационном смысле) свет, идущий от поверхности неизлучающего объекта и содержащий информацию о нем, а не об источнике света. Именно благодаря отраженному свету мы видим предметы, которые его отражают. Он представляет собой разность, полученную при вычитании спектра поглощения объекта из спектра излучения светила. Белый цвет характеризует полное отражение падающего света, а черный – полное его поглощение.

Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Это распределение называется интерференционной картиной.

Когерентными называются источники света одинаковой частоты, обеспечивающие постоянство разности фаз для волн, приходящих в данную точку пространства.

Интерференция света — сложение когерентных световых волн, в результате которого происходит пространственное перераспределение энергии, приводящее к образованию устойчивой картины их усиления или ослабления.

Опыт Юнга (1802 г.)

В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2. Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

Интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых

Интерференционный минимум (темная полоса) достигается при

Измеряя ширину интерференционных полос, Юнг в 1802 г. впервые определил длины световых волн для разных цветов, хотя эти измерения и не были точными.

Зеркала Френеля

Свет от источника S падает расходящимся пучком на два плоских зеркала М1 и М2, расположенных относительно друг друга под углом, лишь немного отличающимся от 180° (угол α мал). Световые пучки, отразившиеся от обоих зеркал, можно считать выходящими из мнимых источников S1 и S2 являющихся мнимыми изображениями S в зеркалах. Мнимые источники S1 и S2, взаимно когерентны, и исходящие из них световые пучки, встречаясь друг с другом, интерферируют в области взаимного перекрывания (на рисунке она заштрихована). Интерференционная картина наблюдается на экране, защищенном от прямого попадания света заслон­кой

Бипризма Френеля

Она состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами. Свет от источника S преломляется в обеих призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых источников S1 и S2, являющихся когерентными. Таким образом, на поверхности экрана (в заштрихованной области) происходит наложение когерентных пучков и наблюдается интерференция.

Интерференция в тонких плёнках

Когда луч света проходит сквозь тонкую плёнку, часть его отражается от внешней поверхности, формируя первый луч, в то время как другая часть проникает внутрь плёнки и отражается от внутренней поверхности, образуя второй луч. Наблюдаемый в отражении цвет излучения определяется интерференцией этих двух лучей. Поскольку каждый проход света через плёнку создает сдвиг по фазе пропорциональный толщине плёнки и обратно пропорциональный длине волны, результат интерференции зависит от двух величин. Отражаясь, некоторые волны складываются в фазе, а другие в противофазе, и в результате белый свет, сталкивающийся с плёнкой, отражается с оттенком, зависящим от толщины плёнки. Эффект интерференции также зависит от угла, с которым луч света сталкивается с плёнкой.

Пусть на плоскопараллельную, однородную, изотропную пластинку толщиной d падает под углом монохроматическая волна. За счет отражения её от нижней и верхней граней происходит наложение образовавшихся когерентных волн в точке P. Разность хода волн

Δd = n (AB + BC) − (AD ± λ/2) = 2dn cos β ± λ/2 .

Поправка λ/2 появляется потому, что свет в точке A отражается от оптически более плотной среды и при этом переходит в менее плотную.

Возникновение величины ±λ/2 объясняется потерей половины длины волны при отражении света от гарницы раздела сред. При n > n половина волны будет потеряна в точке А, и при величине λ/2 будет стоять знак минус. Если n

Δd = 2 dn cos β + λ/2

Тогда условие интерференционного максимума в отраженном свете запишется следующим образом:

2 dn cos β ± λ/2 = (2m + 1)λ/2

если на разности хода интерферирующих волн укладывается нечетное число полуволн, то при наложении волны усиливают друг друга.

Условие интерференционного минимума в отраженном свете

2 dn cos β ± λ/2 = mλ

– если на разности хода интерферирующих волн укладывается четное число полуволн, то при наложении волны гасят друг друга.

На этой диаграмме изображены два луча красного света (лучи 1 и 2). Оба луча разбиваются на два, но нас интересуют только те части, которые изображены сплошными линиями. Рассмотрим луч, выходящий из точки Y. Он состоит из двух лучей, наложившихся один на другой: части луча 1, которая прошла через стенку пузыря и части луча 2, которая отразилась от внешней поверхности. Луч, прошедший через точки XOY путешествовал дольше луча 2. Допустим, случилось так, что длина XOY пропорциональна длине волны красного света, поэтому два луча складываются в фазе.

Эта диаграмма похожа на предыдущую, за исключением того, что длина волны света другая. В этот раз расстояние XOY непропорционально длине волны, и лучи складываются в противофазе. В результате, синий свет не отражается от пузыря с такой толщиной стенки.*

На мыльную пленку, находящуюся в воздухе, падает по нормали пучок белого света. Определим, при какой наименьшей толщине d пленки отраженный свет с определенной длиной волны окажется максимально усиленным в результате интерференции.

Из условия интерференционного максимума находим для толщины пленки выражение

Минимальное значение d получается при m = 0:

Кольца Ньютона
И. Ньютон наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны. Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой.

Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла, называют кольцами Ньютона.

Они изучались Ньютоном при освещении как белым, так и монохроматическим светом.

Измеряя радиусы соответствующих колец, можно (зная радиус кривизны линзы R) определить λ, и, наоборот, по известной λ найти радиус кривизны линзы. Положение максимумов зависит от длины волны λ. Поэтому система светлых и темных полос наблюдается только при освещении монохроматическим светом. При наблюдении в белом свете интерференционная картина приобретает радужную окраску.

Применение интерференции
Просветление оптики

Интерференция при отражении от тонких пленок лежит в основе просветления оптики. Прохождение света через каждую преломляющую поверхность линзы сопровождается отражением примерно 4 % падающего света. В сложных объективах такие отражения совершаются многократно, и суммарная потеря светового потока достигает заметной величины. Отражения от поверхностей линз приводят к возникновению бликов. В просветленной оптике для устранения отражения света на каждую свободную поверхность линзы наносится тонкая пленка вещества с показателем преломления иным, чем у линзы. Толщина пленки подбирается так, чтобы волны, отраженные от обеих ее поверхностей, погашали друг друга. Особенно хороший результат достигается, если показатель преломления пленки равен корню квадратному из показателя преломления линзы. При этом условии интенсивность обеих отраженных от поверхностей пленки волн одинакова.

Источник

Читайте также:  Свет меняется от температуры