Меню

Дифракция света это совокупность явлений которые



Дифракция света это совокупность явлений которые

Дифракционные явления были хорошо известны ещё во времена Ньютона, но объяснить их на основе господствовавшей в то время корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом. Независимо от него французский ученый О. Френель развил количественную теорию дифракционных явлений (1818 г.). В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Подтверждение теории Френеля на опыте явилось одним из основных доказательств волновой природы света. В настоящее время это теория носит название принцип Гюйгенса–Френеля и в ряде практически важных случаев решение дифракционных задач на основе этого принципа даёт достаточно хороший результат.

Литература

Яштолд-Говорко В. А. «Фотосъемка и обработка. Съемка, формулы, термины, рецепты.» Изд. 4-е, сокр. М., «Искусство», 1977.

Ссылки

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Дифракция света» в других словарях:

ДИФРАКЦИЯ СВЕТА — в узком (наиболее употребительном) смысле явление огибания лучами света контура непрозрачных тел и, следовательно, проникновение света в область геом. тени; в широком смысле проявление волновых св в света в условиях, близких к условиям… … Физическая энциклопедия

дифракция света — дифракция Обусловленное волновой природой света явление отклонения от законов распространения света геометрической оптики, возникающее при прохождении света в среде с резкими оптическими неоднородностями. [Сборник рекомендуемых терминов. Выпуск… … Справочник технического переводчика

ДИФРАКЦИЯ СВЕТА — явления уклонения световых лучей, наблюдаемые, наприм., при прохождении их сквозь узкую щель в темную комнату. Если поставить в комнате на некотором расстоянии от отверстая белые ширмы, то на них получаются цветные полосы. Явление это объясняется … Словарь иностранных слов русского языка

Дифракция света — явления, наблюдающиеся при распространении света мимо резких краёв непрозрачных или прозрачных тел, сквозь узкие отверстия. При этом происходит нарушение прямолинейности распространения света, т. е. отклонение от законов геометрической… … Большая советская энциклопедия

дифракция света — šviesos difrakcija statusas T sritis fizika atitikmenys: angl. light diffraction vok. Lichtbeugung, f rus. дифракция света, f pranc. diffraction de la lumière, f … Fizikos terminų žodynas

Дифракция света — совокупность явлений которые обусловлены волновой природой света и наблюдаются при его распространении в среде с резко выраженными неоднородностями (напр. при прохождении через отверстия, вблизи границ непрозрачных тел и т. д.). В узком смысле… … Астрономический словарь

ДИФРАКЦИЯ СВЕТА НА УЛЬТРАЗВУКЕ — (акустооптическая дифракция). При распространении света в среде, в к рой присутствует УЗ волна, происходит дифракция света. Впервые Д. с. на у. была обнаружена П. Дебаем и Ф. Сирсом (США) и одновременно Р. Люка и П. Бикаром (Франция) в 1932.… … Физическая энциклопедия

дифракция света на ультразвуке — ultragarsinė šviesos difrakcija statusas T sritis fizika atitikmenys: angl. Debye Sears effect vok. Beugung des Lichtes an Ultraschallwellen, f; Debye Sears Effekt, m rus. дифракция света на ультразвуке, f; эффект Дебая Сирса, m pranc. effet… … Fizikos terminų žodynas

Дифракция — первого и второго порядка как интерференция волн, образованных при падении плоской волны на непрозрачный экран с парой щелей. Стрелками показаны линии, проходящие через линии интерференционных макси … Википедия

Дифракция электронов — Дифракция электронов процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет волновые свойства. Данное явление называется корпускулярно волновым дуализмом, в том смысле, что частица вещества(в данном… … Википедия

Источник

Дифракция света

Получите помощь лучших авторов по вашей теме

Что такое дифракция света

Дифракция света — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Изначально под ней подразумевалось преломление световой волной препятствия. Однако сегодня данное толкование считается частичным. С более подробным изучением передвижения волны света под дифракцией стали подразумеваться разнообразные формы распространения света в неоднородной среде. Это может быть, как огибание препятствия, так и преломление волны из-за него. Кроме того, свет может переходить от точки к точке постепенно. Это образует криволинейный волновой пучок, что связано не с дифракцией, а с геометрической оптикой.

Таким образом, в волновой теории под дифракцией понимается любое отклонение от норм геометрической оптики. Суть процесса заключается в том, что свет при входе в геометрическую тень огибает препятствие.

Где применяется, принцип Гюйгенса – Френеля

Впервые процесс распространения света был подробно представлен в работах Гюйгенса .

Принцип Гюйгенса заключается в следующем: все, что находится по близости распространения света, является причиной появления новых сферических волн. Сформированные волны рассеиваются от встретившейся точки во всех направлениях, как от излучаемого свет центра. В результате этого происходит их наложение друг на друга.

Теория Гюйгенса была дополнена Френелем. Ученый доказал, что полученная от столкновения с препятствием волна является реальной. В комплексе они интерферируют, то есть взаимодействуют друг с другом. От этого становятся сильнее, что позволяет им распространяться не только вперед, но и назад. Во время движения назад происходит контакт с первоисточником. В результате чего начинается угасание всех световых волн.

Получается, что вторичные волны усиливаются при направлении вперед, а в местах ослабления будут заметны темные участки пространства.

В подобных случаях очевидно появление дифракции на отверстии, поскольку волна огибает его края по направлению к области геометрической тени. Это объясняется тем, что отверстие вырезает светящийся диск, соразмерный его диаметру. Дальнейшее световое поле — это процесс взаимодействия волны вторичных источников, полученных на диске отверстия. В результате этого ход лучей искривляется, поскольку искривленная волна рассеивается в разных направлениях, что не совпадает с первоначальным движением.

Качество волны света, возникшей от разных точек, зависит от фазы и угла отклонения лучей. Это приводит к чередованию максимумов и минимумов.

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны. А результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Условия для возникновения дифракции

Главным условием для возникновения дифракции является наличие препятствия и первоисточника света.

Длина препятствия не должна быть больше длины волны. В противном случае волна просто рассеется или будет заметна только вблизи. Чтобы можно было заметить постоянную картину дифракции, волны должны быть от разных источников. Этого добиться несложно: достаточно иметь один источник света и несколько препятствий. Когда волна попадает на препятствие, она становится новым световым источником. В результате данного взаимодействия световых волн от разных препятствий можно получить устойчивую дифракционную картину.

Читайте также:  Как можно получить плоскополяризованный свет

Таким образом, для возникновения дифракции длина световой волны должна быть соразмерна длине препятствия. Если размеры препятствия больше длины волны, то образуется тень, поскольку волны за нее не проникают. Если размер препятствия слишком мал, то свет с ним не взаимодействует. Чем меньше отверстие препятствия, тем быстрее световая волна расходится в стороны.

Получается, что дифракционное изображение напрямую связано с геометрическими особенностями препятствия.

Где можно наблюдать в природных условиях

Яркие примеры прохождения света через препятствие можно встретить в природе. Речь идет о случаях, когда облака прикрывают солнце или луну. Солнечный свет не может продолжить прямолинейное движение сквозь призму возникшего препятствия. В результате этого лучи преломляются и образуют дугу вокруг самого светила. Кроме того, в зависимости от структуры облака, свет может рассеиваться сквозь дождевые капли. Картина преломления при этом будет представлена разноцветным сиянием.

Радуга на небе или блики масляного пятна на воде также являются примером преломления световой волной препятствия в природных условиях.

Если смотреть на пылающее пламя сквозь запотевшее окно, то можно заметить, как огонь начинает неестественно двигаться в разных направлениях. При этом он окружается разноцветным ореолом, что тоже объясняется световым преломлением препятствия.

Что такое дифракционная решетка

Сфера отклонения света от прямолинейного направления нашла свое применение в повседневной жизни. Примером тому служит светоотражение на CD или DVD дисках. На первый взгляд отражение напоминает радугу. Но при более подробном изучении становится очевидным, что характеристика данного светоотражения имеет достаточно сложную структуру. На диск наносятся на одинаковом расстоянии друг от друга дорожки. Это создает совокупность щелей. При попадании на них света происходит дифракция. Она становится причиной появления световой радуги.

Дифракционная решетка — это совокупность многочисленных щелей и расстояний между ними.

Изображение на решетке является взаимодействием волн света, которые произошли от всех имеющихся щелей одновременно. В физике этот процесс называется многолучевой интерференцией.

Наиболее сложным образцом световой дифракции считается голограмма на кредитных картах. Это связано с наличием на ней дифракционной решетки более сложного вида. В центре голограммы имеется яркое световое кольцо. При попадании на него света можно получить отражение в виде луны или солнца. Это обусловлено игрой света и тени: при попадании света голограммы на тень от пластика образуется некая световая волна.

Связь дифракции и разрешающей способности оптических приборов

Дифракция света считается ограничителем разрешения для оптических приборов: телескопа, микроскопа. В том числе и для человеческого глаза.

Размер препятствий должен быть намного больше длины волны света. Кроме того, рассматривается преломление световой волны препятствия на круглом отверстии.

В качестве примера возьмем 2 звезды на небе. Звездный свет попадает в глаз через зрачок. Таким образом, на сетчатке глаза обе звезды сформируют 2 картины. Они представлены двумя центральными максимумами. Если свет будет падать под определенным углом, то звезды сольются в одну звезду.

Получается, что разрешение можно увеличить или уменьшить, если изменить диаметр объектива или сократить длину волны.

Принцип увеличения используют в телескопах, что позволяет уменьшению рассматриваемого объекта до удобных для рассматривания размеров. Уменьшение объектива используют в изготовлении микроскопов. Это позволяет увеличить маленький элемент до удобных для рассматривания размеров.

Источник

«Дифракция света». 11-й класс

Класс: 11

Презентация к уроку

(Урок получения новых знаний 11 класс, профильный уровень – 2 часа).

Образовательные цели урока:

  • Ввести понятие дифракции света
  • Объяснить дифракцию света с помощью принципа Гюйгенса-Френеля
  • Ввести понятие зон Френеля
  • Объяснить устройство и принцип действия дифракционной решетки

Развивающие цели урока

  • Развитие умений и навыков по качественному и количественному описанию дифракционных картин

Оборудование: проектор, экран, презентация.

План урока

  • Дифракция света
  • Дифракция Френеля
  • Дифракция Фраунгофера
  • Дифракционная решетка

Ход урока.

1. Организационный момент.

2. Изучение нового материала.

Дифракция — явление огибания волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Если свет представляет собой волновой процесс, на что убедительно указывает явление интерференции, то должна наблюдаться и дифракция света.

Дифракция света— явление отклонения световых лучей в область геометрической тени при прохождении мимо краев препятствий или сквозь отверстия, размеры которых сравнимы с длиной световой волны (слайд№2).

Тот факт, что свет заходит за края препятствий, известен людям давно. Первое научное описание этого явления принадлежит Ф. Гримальди. В узкий пучок света Гримальди помещал различные предметы, в частности тонкие нити. При этом тень на экране оказывалась шире, чем это должно быть согласно законам геометрической оптики. Кроме того, по обе стороны тени обнаруживались цветные полосы. Пропуская тонкий пучок света через маленькое отверстие, Гримальди также наблюдал отступление от закона прямолинейного распространения света. Светлое пятно против отверстия оказывалось большего размера, чем это следовало ожидать при прямолинейном распространении света (слайд№2).

В 1802 г. Т. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (слайд №3).

В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий. Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем, весьма точно.

Теория дифракции

Французский ученый О. Френель не только более детально исследовал различные случаи дифракции на опыте, но и построил количественную теорию дифракции. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определять направление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом (слайд №4).

Читайте также:  Теодор курентзис рамо звук света

Различают два случая дифракции:

Если преграда, на которой происходит дифракция, находится вблизи от источника света или от экрана, на котором происходит наблюдение, то фронт падающих или дифрагированных волн имеет криволинейную поверхность (например, сферическую); этот случай называется дифракцией Френеля.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Дифракцию плоских волн часто называют дифракцией Фраунгофера (слайд №5).

Метод зон Френеля.

Для объяснения особенностей дифракционных картин на простых объектах (слайд №6), Френель придумал простой и наглядный метод группировки вторичных источников – метод построения зон Френеля. Этот метод позволяет приближенным способом рассчитывать дифракционные картины (слайд №7).

Зоны Френеля – множество когерентных источников вторичных волн, максимальная разность хода между которыми равна λ/2 .

Если разность хода от двух соседних зон равна λ/2, следовательно, колебания от них приходят в точку наблюдения М в противоположных фазах, так, что волны от любых двух соседних зон Френеля гасят друг друга (слайд №8).

Например, при пропускании света через отверстие малого размера, в точке наблюдения можно обнаружить как светлое, так и темное пятно. Получается парадоксальный результат – свет не проходит через отверстие!

Для объяснения результата дифракции, необходимо посмотреть, сколько зон Френеля укладывается в отверстии. Когда на отверстии укладывается нечетное число зон, то в точке наблюдения возникнет максимум (светлое пятно). Когда на отверстии укладывается четное число зон, то в точке наблюдения возникнет минимум (темное пятно). На самом деле свет, конечно же, проходит через отверстие, но интерференционные максимумы возникают в соседних точках (слайд №9 -11).

Зонная пластинка Френеля.

Из теории Френеля можно получить еще ряд замечательных, иногда парадоксальных следствий. Одно из них – возможность использования в роли собирающей линзы зонной пластинки. Зонная пластинка – прозрачный экран с чередующимися светлыми и темными кольцами. Радиусы колец подбираются так, что кольца из непрозрачного материала закрывают все четные зоны, тогда в точку наблюдения приходят колебания только от нечетных зон, происходящих в одной и той же фазе, что приводит к увеличению интенсивности света в точке наблюдения (слайд №12).

Второе замечательное следствие теории Френеля – предсказание существования светлого пятна (пятна Пуассона) в области геометрической тени от непрозрачного экрана (слайд № 13-14).

Для наблюдения светлого пятна в области геометрической тени необходимо, чтобы непрозрачный экран перекрывал небольшое число зон Френеля (одну-две).

Дифракция Фраунгофера.

Если размеры препятствия много меньше расстояния до источника, то волну, падающую на препятствие, можно считать плоской. Плоскую волну можно также получить, располагая источник света в фокусе собирающей линзы (слайд №15).

Дифракцию плоских волн часто называют дифракцией Фраунгофера по имени немецкого ученого Фраунгофера. Этот вид дифракции рассматривается особо по двум причинам. Во-первых, это более простой частный случай дифракции, а во-вторых, такого рода дифракция часто встречается в разнообразных оптических приборах.

Дифракция на щели

Большое практическое значение имеет случай дифракции света на щели. При освещении щели параллельным пучком монохроматического света на экране получается ряд темных и светлых полос, быстро убывающих по интенсивности (слайд №16).

Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центральной полосы, а освещенность меняется вдоль экрана периодически, в соответствие с условиями максимума и минимума (слайд№17, флеш-анимация «Дифракция света на щели»).

Вывод:

  • а) с уменьшением ширины щели центральная светлая полоса расширяется;
  • б) при заданной ширине щели, расстояние между полосами тем больше, чем больше длина волны света;
  • в) поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов;
  • г) при этом главный максимум будет общим для всех длин волн и представится в виде белой полоски, а боковые максимумы — это цветные полосы с чередованием цветов от фиолетового цвета к красному.

Дифракция на двух щелях.

Если имеются две идентичные параллельные щели, то они дают одинаковые накладывающиеся друг на друга дифракционные картины, вследствие чего максимумы соответственно усиливаются, а, кроме того, происходит взаимная интерференция волн от первой и второй щелей. В результате минимумы будут на прежних местах, так как это те направления, по которым ни одна из щелей не посылает света. Кроме того, возможны направления, в которых свет, посылаемый двумя щелями, взаимно гасится. Таким образом, между двумя главными максимумами располагается один добавочный минимум, а максимумы становятся при этом более узкими, чем при одной щели (слайды№18-19). Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены. При этом световая энергия перераспределяется так, что большая ее часть приходится на максимумы, а в минимумы попадает незначительная часть энергии (слайд№20).

Дифракционная решетка.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками (слайд№21). Если на решетку падает монохроматическая волна – то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее- экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов (слайд№22).

Положение всех максимумов, кроме главного зависит от длины волны. Поэтому если на решетку падает белый свет, то он разлагается в спектр. Поэтому дифракционная решетка является спектральным прибором, служащим для разложения света в спектр. С помощью дифракционной решетки можно точно измерять длину волны, так как при большом числе щелей области максимумов интенсивности сужаются, превращаясь в тонкие яркие полосы, а расстояние между максимумами (ширина темных полос) растет (слайд №23-24).

Разрешающая способность дифракционной решетки.

Для спектральных приборов, содержащих дифракционную решетку, важна способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн.

Способность раздельного наблюдения двух спектральных линий, имеющих близкие длины волн, называют разрешающей способностью решетки (слайд №25-26).

Читайте также:  Двухжильный кабель для света

Если мы хотим разрешить две близкие спектральные линии, то необходимо добиться, чтобы интерференционные максимумы, соответствующие каждой из них, были по возможности более узкими. Для случая дифракционной решетки это означает, что общее число штрихов, нанесенных на решетку, должно быть по возможности очень большим. Так, в хороших дифракционных решетках, имеющих около 500 штрихов на одном миллиметре, при общей длине около 100 мм, полное число штрихов равно 50000.

Решетки в зависимости от их применения бывают металлическими или стеклянными. Лучшие металлические решетки имеют до 2000 штрихов на один миллиметр поверхности, при этом общая длина решетки составляет 100-150 мм. Наблюдения на металлических решетках проводят только в отраженном свете, а на стеклянных – чаще всего в проходящем свете.

Наши ресницы с промежутками между ними представляют собой грубую дифракционную решетку. Если посмотреть, прищурившись, на яркий источник света, то можно обнаружить радужные цвета. Явления дифракции и интерференции света помогают

Природе раскрашивать всё живое, не прибегая к использованию красителей (слайд№27).

3. Первичное закрепление материала.

Контрольные вопросы

  1. Почему дифракция звука повседневно более очевидна, чем дифракция света?
  2. Каковы дополнения Френеля к принципу Гюйгенса?
  3. В чем заключается принцип построения зон Френеля?
  4. В чем заключается принцип действия зонных пластинок?
  5. Когда наблюдается дифракция Френеля, дифракция Фраунгофера?
  6. В чем отличие дифракции Френеля на круглом отверстии при освещении его монохроматическим и белым светом?
  7. Почему дифракция не наблюдается на больших отверстиях и больших дисках?
  8. Чем определяется тот факт, будет ли число зон Френеля, открываемых отверстием, четным или нечетным?
  9. Каковы характерные особенности дифракционной картины, получающейся при дифракции на малом непрозрачном диске.
  10. Каково отличие дифракционной картины на щели при освещении монохроматическим и белым светом?
  11. Какова предельная ширина щели, при которой еще будут наблюдаться минимумы интенсивности?
  12. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
  13. Как изменится дифракционная картина, если увеличить общее число штрихов решетки, не меняя постоянной решетки?
  14. Сколько дополнительных минимумов и максимумов возникает при дифракции на шести щелях?
  15. Почему дифракционная решетка разлагает белый свет в спектр?
  16. Как определить наибольший порядок спектра дифракционной решетки?
  17. Как изменится дифракционная картина при удалении экрана от решетки?
  18. Почему при использовании белого света только центральный максимум белый, а боковые максимумы радужно окрашены?
  19. Почему штрихи на дифракционной решетке должны быть тесно расположены друг к другу?
  20. Почему штрихов должно быть большое число?

Примеры некоторых ключевых ситуаций (первичное закрепление знаний) (слайд №29-49)

  1. Дифракционная решетка, постоянная которой равна 0,004 мм, освещается светом с длиной волны 687 нм. Под каким углом к решетке нужно проводить наблюдение, чтобы видеть изображение спектра второго порядка (слайд№29).
  2. На дифракционную решетку, имеющую 500 штрихов на 1 мм, падает монохроматический свет длиной волны 500 нм. Свет падает на решетку перпендикулярно. Какой наибольший порядок спектра можно наблюдать? (слайд№30).
  3. Дифракционная решетка расположена параллельно экрану на расстоянии 0,7 м от него. Определите количество штрихов на 1 мм для этой дифракционной решетки, если при нормальном падении на нее светового пучка с длиной волны 430 нм первый дифракционный максимум на экране находится на расстоянии 3 см от центральной светлой полосы. Считать, что sinφ ≈ tgφ (слайд№31).
  4. Дифракционная решетка, период которой равен 0,005 мм, расположена параллельно экрану на расстоянии 1,6 м от него и освещается пучком света длиной волны 0,6 мкм, падающим по нормали к решетке. Определите расстояние между центром дифракционной картины и вторым максимумом. Считать, что sinφ ≈ tgφ (слайд № 32).
  5. Дифракционная решетка с периодом 10-5 м расположена параллельно экрану на расстоянии 1,8 м от него. Решетка освещается нормально падающим пучком света длиной волны 580 нм. На экране на расстоянии 20.88 см от центра дифракционной картины наблюдается максимум освещенности. Определите порядок этого максимума. Считать, что sinφ ≈ tgφ (слайд №33).
  6. При помощи дифракционной решетки с периодом 0,02 мм получено первое дифракционное изображение на расстоянии 3,6 см от центрального и на расстоянии 1,8 м от решетки. Найдите длину световой волны (слайд №34).
  7. Спектры второго и третьего порядков в видимой области дифракционной решетки частично перекрываются друг с другом. Какой длине волны в спектре третьего порядка соответствует длина волны 700 нм в спектре второго порядка? (слайд №35).
  8. Плоская монохроматическая волна с частотой 8•1014 Гц падает по нормали на дифракционную решетку с периодом 5 мкм. Параллельно решетке позади нее размещена собирающая линза с фокусным расстоянием 20 см. Дифракционная картина наблюдается на экране в фокальной плоскости линзы. Найдите расстояние между ее главными максимумами 1 и 2 порядков. Считать, что sinφ ≈ tgφ (слайд №36).
  9. Какова ширина всего спектра первого порядка (длины волн заключены в пределах от 380 нм до 760 нм), полученного на экране, отстоящем на 3 м от дифракционной решетки с периодом 0,01 мм? (слайд №37).
  10. Какова должна быть общая длина дифракционной решетки, имеющей 500 штрихов на 1 мм, чтобы с ее помощью разрешить две линии спектра с длинами волн 600,0 нм и 600,05 нм? (слайд №40).
  11. Определите разрешающую способность дифракционной решетки, период которой равен 1,5 мкм, а общая длина 12 мм, если на нее падает свет с длиной волны 530 нм (слайд №42).
  12. Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было разрешить две желтые линии натрия с длинами волн 589 нм и 589,6 нм. Какова длина такой решетки, если постоянная решетки 10 мкм (слайд №44).
  13. Определите число открытых зон при следующих параметрах:
    R =2 мм; a=2.5 м; b=1.5 м
    а) λ=0.4 мкм.
    б) λ=0.76 мкм (слайд №45).
  14. Щель размером 1,2 мм освещается зеленым светом с длиной волны 0,5 мкм. Наблюдатель расположен на расстоянии 3 м от щели. Увидит ли он дифракционную картину (слайд №47).
  15. Щель размером 0,5 мм освещается зеленым светом от лазера с длиной волны 500 нм. На каком расстоянии от щели можно отчетливо наблюдать дифракционную картину (слайд №49).

4. Домашнее задание (слайд№50).

Учебник: § 71-72 (Г.Я. Мякишев, Б.Б. Буховцев. Физика.11).

Сборник задач по физике № 1606,1609,1612, 1613,1617 (Г.Н.Степанова).

Источник

Adblock
detector