Меню

Дифракционный максимум света формула



Оптика Курс лекций

• Радиус k —ой. зоны Френеля:

для сферической волны

,

где а — расстояние диафрагмы с круглым отверстием от точечного источника света; b — расстояние диафрагмы от экрана, на котором ведется наблюдение дифракционной картины; k — номер зоны Фре­неля; λ длина волны;

для плоской волны

.

• Дифракция света на одной щели при нормальном падении лучей. Условие минимумов интенсивности света

, k =1,2,3,…,

где а — ширина щели; φ— угол дифракции; k — номер минимума;

Условие максимумов интенсивности света

, k = l , 2, 3,…,

где φ’ — приближенное значение угла дифракции.

• Дифракция света на дифракционной решетке при нормальном падении лучей. Условие главных максимумов интенсивности

где d — период (постоянная) решетки; k — номер главного макси­мума; φ —угол между нормалью к поверхности решетки и нап­равлением дифрагированных волн.

• Разрешающая сила дифракционной решетки

,

где Δλ — наименьшая разность длин волн двух соседних спектраль­ных линий (λ и λ+Δλ), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки; N — число штрихов решетки; k — порядковый номер дифракцион­ного максимума.

• Угловая дисперсия дифракционной решетки

,

линейная дисперсия дифракционной решетки

.

Для малых углов дифракции

,

где f — главное фокусное расстояние линзы, собирающей на экра­не дифрагирующие волны.

• Разрешающая сила объектива телескопа

,

где β — наименьшее угловое расстояние между двумя светлыми точками, при котором изображения этих точек в фокальной плос­кости объектива могут быть видны раздельно; D — диаметр объек­тива; λ длина волны.

• формула Вульфа — Брэгга

2 d sin = k λ,

где d — расстояние между атомными плоскостями кристалла; — угол скольжения (угол между направлением пучка параллель­ных лучей, падающих на кристалл, и гранью кристалла), опре­деляющий направление, в котором имеет место зеркальное отраже­ние лучей (дифракционный максимум).

Источник

Дифракция света. Принцип Гюйгенса-Френеля. Зоны Френеля

Содержание:

Дифракция света – это явление отклонения света от прямолинейного направления его распространения во время прохождения рядом с препятствиями.

Из опыта видно, что определенные условия влияют на захождение геометрической тени на область.

Когда на пути встречается препятствие в виде диска, шарика или круглого отверстия, тогда экран, расположенный на большом расстоянии, покажет дифракционную картину, то есть систему чередующихся светлых и темных колец. При отверстии линейного характера (щели или нити) экран показывает параллельные дифракционные полосы.

Принцип Гюйгенса-Френеля

Существование дифракционных явлений было задолго до времен Ньютона. Объяснение, основанное на корпускулярной теории, не давало должных результатов. Одним из первых объяснений явления дифракции, основанное на волновых представлениях, было дано Т. Юнгом. Еще в 1818 году была известна и развита количественная теория дифракционных явлений О. Френеля. Принцип Гюйгенса был заложен в основу. Он только дополнил при помощи идеи об интерференции вторичных волн.

Первоначальный вид данного принципа давал возможность нахождения положения фронтов в последующие моменты времени, иначе говоря, определял направление распространения волны. Это и есть принцип геометрической оптики. Впоследствии гипотеза Гюйгенса об огибающих вторичных волнах были заменены Френелем с помощью физически ясного положения, тогда вторичные волны в точке наблюдения интерферировали друг с другом.

Принципом Гюйгенса-Френеля считалась гипотеза, которая была со временем подтверждена. При решении задач, где необходимо использовать данный принцип, получение результата достаточно точное. На иллюстрации изображен принцип Гюйгенса-Френеля.

Читайте также:  Свет движется с ускорением

Рисунок 3 . 8 . 1 Принцип Гюйгенса-Френеля. ∆ S 1 и ∆ S 2 – элементы волнового фронта, n 1 → и n 2 → — заданные нормали.

Предположим, что поверхность S – положение волнового фронта в некоторый момент. Из теории волн известно, что он является поверхностью, где в заданных точках происходит колебание с одинаковым значением фазы. Волновыми фронтами плоской волны считают семейством параллельных плоскостей, которые перпендикулярно направлены относительно распространения волны. Волновые фронты сферической волны, которые испускаются при помощи точечного источника, относят к концентрическим сферам.

Для определения колебания в заданной точке P , которое вызвано волной, используя принцип Френеля, находят колебания, которые вызваны в этой точке с помощью отдельных вторичных волн, которые приходят от элементов поверхности S ( ∆ S 1 , ∆ S 2 и так далее). Далее следует произвести сложение колебаний, учитывая амплитуды и фазы. Элементы, загороженные препятствиями, не учитываются при решении.

Для примера ниже приведена дифракционная задача прохождения плоской монохроматической волны, которая исходит от удаленного источника через отверстие с радиусом R непрозрачного экрана.

Рисунок 3 . 8 . 2 Дифракция плоской волны на экране, содержащем круглое отверстие.

Р – точка наблюдения, находящаяся на оси симметрии, располагаемого на L расстоянии относительно экрана. По принципу Гюйгенса-Френеля распределить на волновой поверхности вторичные источники, совпадающие с плоскостью отверстия, где волны достигают точки Р . Интерференция волн в этой точке является причиной возникновения результирующего колебания, квадрат амплитуды которого определяется при наличии значений длин волн λ , амплитуды A 0 падающей волны и расположением элементов.

Чтобы расчеты были облегченными, волновая поверхность падающей волны разбивается на кольцевые зоны, называемыми зонами Френеля, исходя из правила: расстояния от границ соседних зон к точке Р имеют отличие на половину волны.

Иначе говоря, r 1 = L + λ 2 , r 2 = L + 2 λ 2 , r 3 = L + 3 λ 2 . . .

При рассмотрении волновой поверхности исходя из точки Р , тогда получим, что границы зон Френеля будут иметь вид концентрических окружностей. Наглядно это изображено на рисунке.

Рисунок 3 . 8 . 3 Границы зон Френеля в плоскости отверстия.

По рисунку 3 . 8 . 2 определяем радиусы ρ m зон по формуле: ρ m = ρ m 2 — L 2 = m λ L + m 2 λ 2 4 ≈ m λ L .

Зоны Френеля. Интерференционный максимум

Из определений раздела оптики имеем, что λ L , тогда при решении можно пренебречь вторым подкоренным выражением. Для определения количества зон Френеля, которые укладываются на отверстии, используется формула, включающая в себя значение радиуса R : m = R 2 λ L .

Значение m может быть любым числом. От него зависит результат интерференции вторичных волн, проходящих точку Р . Такие открытые зоны Френеля обладают одинаковым значением площади:

S m = π ρ m 2 — π ρ m — 2 1 = π λ L = S 1 .

По теории равные площади возбуждают колебания с одинаковой амплитудой в точке наблюдения. Но каждая последующая зона угла α , располагаемая между лучом, проводимым к точке наблюдения, и нормалью относительно волновой поверхности, возрастает. Предположения Френеля говорит о том, что при увеличении угла α происходит незначительное уменьшение колебаний, то есть:

A 1 > A 2 > A 3 > . . . > A 1 , где A m обозначает амплитуду колебаний, которые были вызваны при помощи m -ой зоны.

Используя приближение, видно, что амплитуда колебаний, которая вызвана определенной зоной, равняется среднему арифметическому соседних зон. Иначе это запишем как A m = A m — 1 + A m + 1 2 .

Отличие от двух соседних точек расстоянием λ 2 говорит о том, что колебания, возбуждаемые этими зонами в состоянии противофазы. Соседние волны начинают гасить друг друга, а это приводит к тому, что суммарная амплитуда в точке запишется как:

A = A 1 – A 2 + A 3 – A 4 + . . . = A 1 – ( A 2 – A 3 ) – ( A 4 – A 5 ) – . . . A 1 .

Читайте также:  Ночь тиха ночь светла свет с небес

Отсюда делаем вывод, что суммарная амплитуда в точке меньше колебаний, вызванных только при помощи одной зоны Френеля. Если все имеющиеся зоны Френеля являлись открытыми, тогда к точке наблюдения двигалась волна с амплитудой A 0 , невозмущенная препятствием. Тогда запись принимает вид:

A = A 0 + A 1 2 — A 2 + A 3 2 + A 3 2 — A 4 + A 5 2 + . . . = A 1 2 .

Выражения в скобках равняются нулю, значит, амплитуда, вызванная волновым фронтом, равняется половине действий первой зоны.

Когда отверстие непрозрачного экрана дает возможность только одной зоне Френеля быть открытой, тогда наблюдается возрастание амплитуды колебаний в количестве 3 раз, а интенсивности – 4 раз. При открытии двух зон действие становится равным нулю. При наличии непрозрачного экрана с несколькими нечетными открытыми зонами, очевидно, что произойдет резкое возрастание амплитуды. При открытии 1 , 3 , 5 зон получим, что A = 6 · A 0 , I = 36 · I 0 .

Полученные пластинки обладают свойством фокусировки света, поэтому их называют зонными пластинками.

Круглый диск дает понять, что при дифракции зоны Френеля от 1 до m будут в закрытом состоянии. Отсюда получаем, что формула амплитуды колебаний примет вид:

A = A m + 1 — A m + 2 + A m + 3 — . . . = A m + 1 2 + A m + 1 2 — A m + 2 — A m + 3 2 + . . .

Иначе можно записать как A = A m + 1 2 , ибо выражения в скобках будут равняться нулю.

Когда диск может закрыть небольшие зоны, тогда A m + 1 ≈ 2 A 0 и A ≈ A 0 , можно наблюдать интерференционный максимум. Иначе его называют пятном Пуассона, которое окружается дифракционными кольцами светлого и темного цвета.

Чтобы углубиться в понятие, необходимо оценить зоны Френеля. Имеется дифракционная картина на экране с расстоянием равным L = 1 м , а значение длины волны света λ = 600 н м (красный). Отсюда получим, что радиусом первой зоны является ρ 1 = L λ ≈ 0 , 77 м м .

Так как оптический диапазон имеет короткую волну, тогда соответственно зона Френеля также мала. Отчетливее проявление дифракционных явлений заметно при небольшом количестве зон на препятствии.

Получим формулы вида:

m = R 2 L λ ≥ 1 или R 2 ≥ L λ .

Название данного соотношения — критерий наблюдения дифракции.

Когда количество зон Френеля из препятствия увеличивается, тогда дифракционные явления становятся незаметными:

m = R 2 L λ > > 1 или R 2 > > L λ .

Определение границы применимости геометрической оптики возможно при помощи заданного неравенства. При выполнении данного условия узкий пучок света может быть сформирован.

Отсюда следует вывод, что волновая оптика – это предельный случай геометрической.

Выше рассмотренный случай относится к дифракции света с удаленным источником, располагаемом на препятствиях округлой формы. При расположении точечного источника света на конечном расстоянии сферически расходящаяся волна должна падать на препятствие. Данный случай усложняет задачу. Тогда построение зон Френеля необходимо выполнять на поверхности сферической формы, показанное на рисунке 3 . 8 . 4 .

Рисунок 3 . 8 . 4 Зоны Френеля на сферическом фронте волны.

При расчете видно, что радиусы ρ m зон Френеля на волне сферического фронта запишется, как

ρ m = a b a + b λ .

Выводы по теории Френеля справедливы.

Дифракция и интерференция света применима к любым волнам, так как имеется общность закономерностей. Начало XIX века – это было время, когда ученые только начинали изучать волны, а физическая природа света еще не была раскрыта.

Рисунок 3 . 8 . 5 Модель дифракции света.

Рисунок 3 . 8 . 6 Модель зоны Френеля.

Источник

Дифракция света

В рамках геометрической оптики, распространение луча в оптически однородной среде — прямолинейное, однако в природе существует ряд явлений, где можно наблюдать отклонение от этого условия.

Дифракция – явление огибания световыми волнами встреченных препятствий. В школьной физике изучаются две дифракционные системы (системы, при прохождении луча в которых наблюдается дифракция):

  • дифракция на щели (прямоугольном отверстии)
  • дифракция на решётке (набор равноотстоящих друг от друга щелей)
Читайте также:  Чихаю при ярком резком свете

Дифракция на щели — дифракция на прямоугольном отверстии (рис. 1).

Рис. 1. Дифракция на щели

Пусть дана плоскость со щелью, шириной , на которую под прямым углом падает пучок света А. Большинство света проходит на экран, однако часть лучей дифрагирует на краях щели (т.е. отклоняется от своего первоначального направления). Далее эти лучи интерферируют друг с другом с образованием дифракционной картины на экране (чередование ярких и тёмных областей). Рассмотрение законов интерференции достаточно сложно, поэтому ограничимся основными выводами.

Полученная дифракционная картина на экране состоит из чередующихся областей с дифракционными максимумами (максимально светлыми областями) и дифракционными минимумами (максимально тёмными областями). Эта картина симметрична относительно центрального светового пучка. Положение максимумов и минимумов описывается углом относительно вертикали, под которым они видны, и зависит от размера щели и длины волны падающего излучения. Положение этих областей можно найти используя ряд соотношений:

  • для дифракционных максимумов
  • где
    • — ширина щели,
    • — угол между вертикалью и направлением на максимум,
    • — порядок максимума (счётчик),
    • — длина волны света.

Нулевым максимумом дифракции называется центральная точка на экране под щелью (рис. 1).

  • для дифракционных минимумов
  • где
    • — ширина щели,
    • — угол между вертикалью и направлением на минимум,
    • — порядок минимума (счётчик),
    • — длина волны света.

Вывод: по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (1) или (2).

Дифракция на дифракционной решётке.

Дифракционной решёткой называется система, состоящая из чередующихся щелей, равноотстоящих друг от друга (рис. 2).

Рис. 2. Дифракционная решётка (лучи)

Так же, как и для щели, на экране после дифракционной решётки будет наблюдаться дифракционная картина: чередование светлых и тёмных областей. Вся картина есть результат интерференции световых лучей друг с другом, однако на картину от одной щели будет воздействовать лучи от других щелей. Тогда дифракционная картина должна зависеть от количества щелей, их размеров и близкорасположенности.

Введём новое понятие — постоянная дифракционной решётки:

  • где
    • — постоянная дифракционной решётки,
    • — расстояние между щелями,
    • — ширина щели.

Тогда положения максимумов и минимумов дифракции:

  • для главных дифракционных максимумов (рис. 3)
  • где
    • — постоянная дифракционной решётки,
    • — угол между вертикалью и направлением на максимум.
    • — порядок максимума (счётчик),

Рис. 3. Дифракционная решётка (максимумы)

  • для дифракционных минимумов
  • где
    • — ширина щели,
    • — угол между вертикалью и направлением на минимум,
    • — порядок минимума (счётчик),
    • — длина волны света.

Отдельным вопросом задач на дифракцию является вопрос о наибольшем количестве максимумов, которые можно наблюдать в текущей системе. Наибольший угол, под которым можно наблюдать максимум — , тогда, исходя из (4):

Главное помнить, что число максимумов — число, т.е. от полученного ответа необходимо брать только целую часть.

Вывод: по условиям задачи необходимо выяснить: максимум или минимум дифракции необходимо найти и использовать соответствующее соотношение (4) или (5).

Общий вывод: задачи на дифракцию должны содержать в себе словосочетания, связанные с «дифракцией». Далее разбираемся с объектом: щель или дифракционная решётка и используем соответствующие соотношения для минимума или максимума.

Источник

Adblock
detector