Меню

Что такое коэффициент отражения света



Что представляет собой закон отражения света: полная формулировка

Трансформацию освещения мы наблюдаем повсеместно: в витринах магазинов, солнечные блики от воды и конечно в зеркале. Но мы совсем не задумываемся о механизмах и принципах этого явления. Но эти основы активно применяются в различных сферах нашей жизни. Давайте чуть глубже узнаем: что собой представляет свет, как он преломляется и как это применяется в жизни.

Основы знаний о свете

Основы физических знаний являются наиболее доступными для понимания, так как их принципы мы воочию наблюдаем каждый день вокруг себя. То же касается и закона отражения света. Этот закон описывает момент, когда световые волны, попадая на поверхность, изменяют свое направление и возвращаются обратно только под другим углом.

Это касается не только зеркальных поверхностей. Любой объект мы видим, потому что он отражает естественное солнечное или искусственное освещение.

При изменении своего направления лучи проходят в одной среде и сталкиваются с другой, часть их возвращается обратно в первичную среду. Если часть спектра проникает в другое вещество мы наблюдаем явление – преломления.

Чтобы не запутаться в теории, давайте разберемся с терминологией:

  1. Падающий луч – это поток световых волн, попадающий на границу разделения двух оптических сред.
  2. Излучение, которое вернулось в начальное вещество – называется отраженным.
  3. Если мы построим воображаемый перпендикуляр к отражающей поверхности (нормаль) в точке падения освещения, то угол падения будет высчитываться, как угол между перпендикуляром и падающим световым потоком.
  4. Угол возвращения света, соответственно, это угол между нормалью и отраженным освещением.

Рекомендуем посмотреть видео на тему “Закон отражения света”.

На основе этих определений можно вывести коэффициент отражения. Этот коэффициент показывает, какая часть светового потока вернется обратно в первоначальную среду. На показатель возвращения в первую очередь влияет характер лучей и угол падения на поверхность.

Небольшой исторический экскурс

Фундамент теоретических знаний о законах распространения света был заложен древнегреческим математиком Евклидом и Аристотелем. Они первые попытались описать процессы трансформации солнечной активности с точки зрения физики еще в 3 веке до н.э.

Далее теоретические материалы изучались и подтверждались опытным путем Ньютоном, Гюйгенсом. Именно он первый объяснил геометрические закономерности оптических явлений с точки зрения волновой природы излучения. Его доказательства основываются на геометрических аксиомах о равнобедренных треугольниках.

Эти принципы мы разберем немного подробней.

Закон отражения света

Закон отражения света описывает закономерности при явлении, когда луч, проходящий в одном веществе, на поверхности соприкосновения с другим веществом возвращается обратно.

Если среда прозрачная, то спектр проходит через нее и возвращения мы не увидим.

Наше зрение воспринимает свет от его излучателя, либо от предметов, отражающих световые волны. При этом если предмет отражает часть энергии обратно, то он сам становится объектом излучения, для наших глаз.

Чтобы описать закономерности геометрической оптики существуют, два закона:

  • Первый закон: излучение падающее, излучение, отраженное и нормальное (условный перпендикуляр к поверхности) располагаются в одной плоскости относительно друг друга. Это значит, что световой пучок является плоской.
  • Второй закон: угол отражения падающего луча равен углу падения относительно нормали.

То есть сначала световой пучок попадает на зеркальную поверхность, и в точке падения становится источником вторичного излучения. Это произойдет спустя миллисекунды. Исходя из принципа Гюйгенса, если рассматривать падение и возвращение потока с точки зрения равнобедренных треугольников (∠АВС = ∠DAC).

Читайте также:  Как спать новорожденному ребенку со светом или без

Второй закон можно представить в виде равенства:

То есть вся энергия будет направлена на отражение света, при этом преломленного освещения не будет совсем. Этот феномен называется – явление полного отражения света.

Зеркальное и диффузионное отражение

Существует два типа возвращения лучей в вещество откуда они упали: зеркальное и диффузное. Это зависит от структуры поверхности.

  • Диффузное отражение происходит от негладких оснований (дерево, бумага, асфальт). Такие материалы имеют много микро-изгибов, впадин, ломанных углублений, которые имеют разные углы. Поэтому параллельные волны энергии, попадая на такой объект, отражаются под разными углами.
    То есть для каждой волны второй закон выполняется, а в общем рассеивание потока происходит в разные стороны.
  • Зеркальное отражение мы наблюдаем от глянцевых ровных оснований (зеркало, ртуть, затемненное стекло, шлифованный металл, камень). Это явление, когда каждая волна возвращается обратно под одинаковым углом для всех лучей.
    Излучение падает на объект параллельными линиями и отражается, тоже параллельными потоками.

Рекомендуем посмотреть видео на тему “Зеркальное и диффузное отражение”.

Явление обратного отражения

Если поверхность абсолютно плоская и зеркальная, то можно наблюдать процесс обратного отражения. Это явление, когда волны полностью возвращаются после попадания на зеркальное основание к источнику их излучения по параллельной прямой.

То есть, если взять зеркало и направить на него освещение прямо перпендикулярно, оно вернется точно обратно.

Наглядно этот феномен можно наблюдать, если разместить два зеркала перпендикулярно друг к другу. Под каким бы наклоном не направить освещение, спектр будет возвращаться обратно параллельно первоначальному излучению.

Использование закона на практике

На практике мы можем наблюдать эти физические закономерности повсюду. Чтобы было наглядней, возьмите лазерный фонарик с тонким пучком света. Выключите свет и направьте его на зеркало под разными углами.

Если вы будете менять направление освещения, будет меняться и плоскость его возвращения. Такой эффект применяется в оптическом оснащении современной экспериментальной техники. Вогнутые зеркальные плоскости применяются для фокусировки лучей в одной точке. Выпуклые же наоборот рассеивают попадающий на них спектр. При этом увеличивается угол обзора.

Принцип полного внутреннего возврата спектра энергии, применяется в изготовлении оптико-волоконного производства кабелей для скоростной передачи цифровых данных.

В заключение

Явления, которые мы наблюдаем ежедневно, имеют свои принципы и описания. Мы не всегда задумываемся о том, почему видим свое отражение в водоеме, или искаженный портрет в комнате смеха. Однако, эти закономерности активно применяются в производстве оптики. Где еще мы можем наблюдать действие закона отражения света в повседневной жизни, делитесь в комментариях и социальных сетях.

Источник

Статьи на букву К

КОЭФФИЦИЕНТ ОТРАЖЕНИЯ

КОЭФФИЦИЕНТ ОТРАЖЕНИЯ — отвлеченное число, показывающее отношение светового потока, отраженного телом, к световому потоку, падающему на него: ρ=F/F 0 .

Так как в природе не существует таких тел, которые полностью отражали бы весь падающий на них световой поток, и все тела в той или иной мере поглощают свет, коэффициент отражения всегда меньше единицы. Различают коэффициент правильного, или зеркального, отражения, коэффициент диффузного отражения и общий коэффициент отражения.

Читайте также:  Что делать если часто отключают свет

Особый интерес представляет собой коэффициент правильного отражения от полированных стеклянных поверхностей, например от поверхностей линз или призм.

Коэффициент отражения R от полированной стеклянной поверхности зависит от показателя преломления стекла и от угла падения луча.

Рис. Зависимость коэффициента отражения от угла падения луча на поверхность раздела воздух — стекло

На рис. приведена зависимость коэффициента отражения от угла падения, из которой видно, что для углов до 45-50°, т. е. в пределах того, что имеет место в обычных объективах, коэффициент отражения остается практически постоянным и, следовательно, зависит только от показателя преломления стекла Значение R может быть вычислено по формуле:

где n — показатель преломлtнии стекла.

Если n = 1,5, то коэффициент отражения составляет:

т. е. коэффициент отражения растет с увеличением показателя преломления. Этим объясняются большие потери света, имеющие место в сложных объективах, изготовленных из тяжелых сортов оптического стекла, если их поверхности не просветлены.

  • Назад
  • Вперёд

Источник

Отражение света

Мы видим предметы за счет отражения света

С явлением отражения света мы сталкиваемся ежедневно. Наше утро начинается с умывания перед зеркалом, в котором мы видим свое отражение. Свет отражается в окнах домов, витринах магазинов, в автомобильных зеркалах и т.д.

Отражаясь от поверхностей предметов, свет попадает в глаз человека, формирует изображение на сетчатке глаза и, тем самым, позволяет нам видеть окружающий мир. В ночное время солнечный свет отсутствует, поэтому разглядеть предметы можно только, если они сами излучают свет (например, фонари, окна домов), либо, если мы сами воспользуемся внешней подсветкой (фонариком, прожектором).

Рис. 1. Примеры отражения света. Зеркальное и диффузное отражения.

В зависимости от качества границы раздела различают зеркальное и диффузное отражения. Зеркальным называется отражение от очень гладких поверхностей, которые еще называют оптически гладкими, когда величина неровностей поверхности меньше 1 мкм. Лучи света при этом отражаются в одном направлении.

Диффузное отражение света происходит от шероховатых (матовых) поверхностей. Отражение лучей света происходит в разных направлениях. Когда часть поверхности зеркальная, а часть матовая, то в таком случае говорят о смешанном отражении.

Первые попытки сформулировать закономерности отражения света найдены в трактате “Катоптрика” знаменитого древнегреческого математика Эвклида, написанного им примерно в 300 г. до н. э.

Что такое принцип Гюйгенса

Для построения волновой теории распространения световых волн голландский физик Христиан Гюйгенс в 1678 г. предложил взять за основу принцип, состоящий из двух постулатов (утверждений, принимаемых в качестве аксиом):

  • Каждая точка среды, до которой дошло возмущение (световая волна), сама становится источником вторичных, сферических волн;
  • Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени. Фронт волны — это огибающая фронта вторичных волн.

Рис. 2. Принцип Гюйгенса.

На представленном рисунке показан фронт световой волны, распространяющийся со скоростью v в два соседних момента времени — t и t+Δt. Точки фронта волны в момент времени t являются источниками вторичной волны в момент времени t+Δt.

Принцип Гюйгенса позволил получить два закона отражения света, которые подтвердились результатами многочисленных экспериментов:

    1 закон отражения света:

Второй закон устанавливает только соотношение между углом падения и углом отражения. Но часть света может преодолеть границу раздела сред (преломиться) и пройти внутрь второй среды. Количество прошедшего света и величина угла преломления вычисляются с помощью других формул.

Читайте также:  Как определить скорость света через расстояние

Коэффициент отражения

Полное, почти стопроцентное, отражение света возможно только от идеальных зеркальных поверхностей. Часть света преломляется и проходит через границу под углом γ. Например, мы видим предметы и рыб в море за счет того, что свет падает на поверхность воды, преломляется, проходит в толщу воды, отражается и выходит обратно, преломившись еще раз.

Способность тел или границ раздела тел (сред) отражать падающий на него свет характеризуется безразмерной величиной, которая называется коэффициентом отражения R :

Ф — поток света, упавшего на поверхность раздела;

Ф — поток отраженного света.

Рис. 3. Измерение коэффициента отражения света от зеркальных поверхностей.

Коэффициент отражения от различных поверхностей измеряют экспериментально и приводят потом в справочных таблицах.

В общем случае коэффициент отражения равен сумме коэффициентов зеркального и диффузного отражений. Величина коэффициента отражения зависит от физических свойств тела, угла падения и длины волны (цвета) света.

Что мы узнали?

Итак, мы узнали, что отражение света от поверхностей тел бывает зеркальным, диффузным и смешанным. По принципу Гюйгенса при отражении света угол отражения β равен углу падения α. Коэффициент отражения R характеризует способность тела отражать падающий на него свет.

Источник

Коэффициент отражения (радиотехника)

  • Коэффицие́нт отраже́ния — общее название безразмерных величин, характеризующих отражение волн от неоднородности в среде распространения. Примерами неоднородности могут быть нагрузка в линии передачи или граница раздела двух однородных сред с различными значениями электрофизических параметров.

Коэффициент отражения по напряжению — отношение комплексной амплитуды напряжения отраженной волны к комплексной амплитуде напряжения падающей волны в заданном сечении линии передачи .

Коэффициент отражения по току — отношение комплексной амплитуды тока отраженной волны к комплексной амплитуде тока падающей волны в заданном сечении линии передачи .

Коэффициент отражения радиоволны — отношение указанной составляющей напряженности электрического поля в отраженной радиоволне к той же самой составляющей в падающей радиоволне .

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Фотоны, которые мигрируют в биологических тканях могут быть описаны при помощи численного моделирования методом Монте Карло или аналитическим уравнением переноса излучения (УПИ). Однако, УПИ трудно решается без применения упрощений (приближений). Стандартным методом упрощения УПИ является диффузионное приближение. Общее решение уравнения диффузии для фотонов получается быстрее, но менее точно чем методом Монте Карло.

γ4), радиационное затухание важно для ускорителей лёгких ультрарелятивистских частиц (электронные синхротроны), и несущественно для адронных машин.

Внẏтренние гравитациỏнные вỏлны (ВГВ) или инерциóнно-гравитациóнные вóлны (ИГВ) — одна из форм колебательных движений, которые существуют в атмосфере как упругой среде. Термин «гравитационные» в названии данного типа волн указывает на то, что сила тяжести является одним из факторов, определяющих существование ВГВ.

В связи с тем, что электрические сигналы представляют собой изменяющиеся во времени величины, в электротехнике и радиоэлектронике используются по необходимости разные способы представлений напряжения и силы электрического тока.

Электри́ческий адмитта́нс (фр. admittance от лат. admittere пропускать, впускать) — комплексная проводимость двухполюсника для гармонического сигнала. В русскоязычной литературе этот термин обычно не применяется — вместо него употребляется термин «комплексная проводимость» (см., например, (Бессонов 1978)).

Источник