Меню

Что называется изображением протяженного источника света



Что называется изображением протяженного источника света

Направление движения энергии световой волны определяется вектором Пойнтинга (система единиц СГС Гаусса), здесь — скорость света в вакууме, и — векторные напряженности электрического и магнитного полей. Длина вектора Пойнтинга равна плотности потока энергии, то есть количеству энергии, которое в единицу времени протекает через единичную площадку перпендикулярную вектору . В изотропной среде направление движения поверхности фиксированной фазы совпадает с направлением движения энергии световой волны. В кристалле эти направления могут не совпадать. Далее будем рассматривать изотропную среду.

Световые лучи.

Линии векторного поля , вдоль которых распространяется свет, называются лучами. Если поверхности равных фаз представляют собой параллельные плоскости, то волна называется плоской. Плоской волне соответствует параллельный пучок лучей, так как лучи в изотропной среде перпендикулярны поверхностям равных фаз. Сферической волной называется волна с поверхностями равных фаз сферической формы. Ей соответствует пучок лучей, выходящих из одной точки или собирающихся в одну точку. В этих двух случаях говорят соответственно о расходящейся и о сходящейся сферической волне.

Приближение геометрической оптики.

Если длина световой волны очень мала по сравнению со всеми размерами оптических приборов, то явлениями дифракции и интерференции можно пренебречь. Такое рассмотрение распространения света называется приближением геометрической оптики.

Геометрическая оптика обычно ограничивается рассмотрением распространения света в однородных средах и предметах, состоящих из однородных сред. Распространение света в среде с плавно изменяющимся показателем преломления описывается уравнением эйконала.

Отражение и преломление света.

Если световая волна распространяется в однородной среде без препятствий, то волна распространяется по прямым линиям — лучам. На границе раздела двух однородных сред лучи отражаются и преломляются (рис.1). Отраженный (3) и преломленный (2) лучи находятся в одной плоскости с падающим лучом (1) и перпендикуляром к границе раздела двух сред ( ). Угол падения равен углу отражения . Угол преломления можно найти из равенства

где и — показатели преломления первой и второй среды.

Отражение от плоского зеркала.

Плоское зеркало, как и сферическое, отражает лучи света в соответствии с законом отражения (угол падения равен углу отражения). Свет после отражения от плоского зеркала во всех смыслах распространяется так, как если бы вместо зеркала стояло окошко, а источник света располагался бы за поверхностью зеркала, за окошком. Интересно, что изображение в зеркале находится не просто в другом месте, оно вывернуто «наизнанку», при этом «правое» и «левое» меняются местами. Например, правая спираль становится левой спиралью.

Преломление света, также как и отражение, можно рассматривать, как «кажущееся» изменение положения источника света. Этот факт проявляется в кажущемся изломе прямой палки, наполовину опущенной в воду под углом к поверхности воды. Мнимое положение источника света в данном случае будет различаться для лучей, падающих на границу раздела двух сред под различными углами. По этой причине обычно избегают говорить о мнимом положении источника света при преломлении.

Призма.

В задачах с призмами поворот света призмой можно рассматривать как два последовательных преломления света на плоских гранях призмы при входе света в призму и при его выходе.

Особый интерес представляет частный случай призмы с малым углом при вершине ( на рис. 2). Такую призму называют тонкой призмой. Обычно рассматриваются задачи, в которых свет падает на тонкую призму почти перпендикулярно ее поверхности. При этом за два преломления лучи света поворачивают на малый угол в плоскости перпендикулярной ребру призмы в сторону утолщения призмы (рис. 2). Угол поворота не зависит от угла падения света в приближении малых углов падения. Это означает, что призма поворачивает «кажущееся» положение источника света на угол в плоскости перпендикулярной ребру призмы.

Из двух таких тонких призм состоит, в частности, бипризма Френеля (рис. 3), проходя через которую свет от точечного источника распространяется далее так, как если бы свет излучался двумя точечными когерентными источниками.

Оптическая ось.

Оптической осью называется прямая линия, проходящая через центры кривизны отражающих и преломляющих поверхностей. Если система имеет оптическую ось, то это центрированная оптическая система [2].

Линза.

Обычно прохождение света через линзу рассматривается в приближении параксиальной оптики, это означает, что направление распространения света всегда составляет малый угол с оптической осью, и лучи пересекают любую поверхность на малом расстоянии от оптической оси.

Линза может быть собирающей или рассеивающей.

Лучи, параллельные оптической оси, после собирающей линзы проходят через одну и ту же точку. Эта точка называется фокусом линзы. Расстояние от линзы до ее фокуса называется фокусным расстоянием. Плоскость, перпендикулярная оптической оси и проходящая через фокус линзы, называется фокальной плоскостью. Параллельный пучок лучей, наклоненный к оптической оси, собирается за линзой в одну точку ( на рис. 4) в фокальной плоскости линзы.

Рассеивающая линза преобразует параллельный оптической оси пучок лучей в расходящийся пучок (рис. 5). Если расходящиеся лучи продолжить назад, то они пересекутся в одной точке — фокусе рассеивающей линзы. При небольшом повороте пучка параллельных лучей точка пересечения перемещается по фокальной плоскости рассеивающей линзы.

Построение изображений.

В задачах на построение изображений подразумевается, что протяженный источник света состоит из некогерентных точечных источников. В этом случае изображение протяженного источника света состоит из изображений каждой точки источника, полученных независимо друг от друга.

Изображение точечного источника — это точка пересечения всех лучей после прохождения через систему, лучей испущенных точечным источником света. Точечный источник испускает сферическую световую волну. В приближении параксиальной оптики сферическая волна, проходя через линзу (рис. 6), распространяется и далее в виде сферической волны, но с другим значением радиуса кривизны. Лучи за линзой либо сходятся в одну точку (рис. 6а), которую называют действительным изображением источника (точка ), либо расходятся (рис. 6б). В последнем случае продолжения лучей назад пересекаются в некоторой точке , которая называется мнимым изображением источника света.

В параксиальном приближении все лучи, исходящие из одной точки до линзы, после линзы пересекаются в одной точке, поэтому для построения изображения точечного источника достаточно найти точку пересечения «удобных нам» двух лучей, эта точка и будет изображением.

Читайте также:  Применение света как электромагнитной волны

Если перпендикулярно оптической оси поставить лист бумаги (экран) так, чтобы изображение точечного источника попало на экран, то в случае действительного изображения на экране будет видна светящаяся точка, а в случае мнимого изображения — нет.

Построение изображения в тонкой линзе.

Есть три луча, удобных для построения изображения точечного источника света в тонкой линзе.

Первый луч проходит через центр линзы. После линзы он не изменяет своего направления (рис. 7) как для собирающей так и для рассеивающей линзы. Это справедливо только в том случае, если среда с обеих сторон линзы имеет одинаковый показатель преломления. Два других удобных луча рассмотрим на примере собирающей линзы. Один из них проходит через передний фокус (рис. 8а), или его продолжение назад проходит через передний фокус (рис. 8б). После линзы такой луч пойдет параллельно оптической оси. Другой луч проходит до линзы параллельно оптической оси, а после линзы через задний фокус (рис. 8в).

Удобные для построения изображения лучи в случае рассеивающей линзы показаны на рис. 9а,9б.

Точка пересечения, мнимого или действительного, любой пары из этих трех лучей, прошедших линзу, совпадает с изображением источника.

В задачах по оптике иногда возникает потребность найти ход луча не для одного из удобных нам трех лучей, а для произвольного луча (1 на рис. 10), направление которого до линзы определено условиями задачи.

В таком случае полезно рассмотреть, например, параллельный ему луч (2 на рис. 10б), проходящий через центр линзы, независимо от того есть или нет такой луч на самом деле.

Параллельные лучи собираются за линзой в фокальной плоскости. Эту точку ( на рис. 10б) можно найти как точку пересечения фокальной плоскости и вспомогательного луча 2, проходящего линзу без изменения направления. Вторая точка, необходимая и достаточная для построения хода луча 1 после линзы, это точка на тонкой линзе ( на рис. 10б), в которую упирается луч 1 с той стороны, где его направление известно.

Построение изображения в толстой линзе.

Тонкая линза — линза, толщина которой много меньше ее фокусного расстояния. Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу.

Тогда изображение в толстой линзе можно найти как изображение изображения. Первая сферическая поверхность толстой линзы дает изображение источника как изображение в тонкой линзе. Вторая сферическая поверхность дает изображение этого изображения.

Другой подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы.

Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления [2].

Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после линзы, либо точку пересечения продолжений лучей назад (для мнимого изображения).

Построение хода лучей проводится так, как будто между главными плоскостями системы находится тонкая линза, а пространство между главными плоскостями отсутствует. Пример построения приведен на рис. 11. и — главные плоскости системы.

Задача прохождения света через центрированную оптическую систему может быть решена не только геометрическим построением хода лучей, но и аналитически. Для аналитического решения задач удобен матричный метод [2].

Формулы тонкой линзы.

Если в задаче требуется аналитический результат, а не построение изображения, то для решения обычно достаточно трех формул:

Здесь — оптическая сила линзы, — фокусное расстояние, — расстояние от линзы до источника света, — расстояние от линзы до изображения, и — радиусы кривизны обоих поверхностей линзы, — показатель преломления материала линзы.

В этих формулах все величины с размерностью длины могут принимать как положительные, так и отрицательные значения. Фокусное расстояние положительно для собирающей линзы, положительно для действительного изображения, и положительны для двояковыпуклой линзы. Расстояние от линзы до источника — положительная величина, но и тут можно представить себе мнимый точечный источник, для которого это расстояние будет отрицательным.

Реже встречаются задачи, в которых показатели преломления среды с двух сторон от линзы различаются. Тогда потребуются следующие формулы:

Может быть полезна и формула для оптической силы одной сферической поверхности, в частности при рассмотрении толстой линзы как двух сферических поверхностей:

Сферическое зеркало.

Чтобы удовлетворить приближению параксиальной оптики, нужно потребовать, чтобы сферическое зеркало было малой частью сферы. Другими словами, размер зеркала должен быть много меньше радиуса кривизны сферы.

Сферическое зеркало отражает световые лучи аналогично оптической системе, состоящей из тонкой линзы и вплотную поставленного плоского зеркала. Вогнутое зеркало аналогично собирающей линзе, выпуклое — рассеивающей.

Модуль фокусного расстояния сферического зеркала равен половине радиуса кривизны сферы

Фокус расположен посередине между зеркалом и центром сферы.

На рис. 12а,б приведены примеры построения изображений точечного источника света в сферическом зеркале.

Источник

Что называется изображением протяженного источника света

Рассмотренные выше интерференционные и дифракционные явления волновой оптики относились к случаю монохроматического света, излучаемого точечным источником. Однако все реальные источники света имеют конечные размеры, а излучаемый ими свет, как мы уже обсуждали выше, никогда не является строго монохроматическим. Поэтому интересно выяснить, к каким изменениям в результатах приведет отказ от монохроматической идеализации и учет конечных размеров источников света. Для простоты и большей наглядности выясним роль каждого из этих факторов в отдельности.

Начнем с учета конечных размеров источника. Будем считать, что реальный протяженный источник состоит из большого числа точечных взаимно некогерентных элементов, излучающих свет определенной длины волны. В этом случае интенсивность в любой точке волнового поля равна сумме интенсивностей от каждого точечного источника.

Читайте также:  Как внести показания счетчика света через интернет

Рассмотрим изменение интерференционной картины в опыте Юнга, обусловленное использованием протяженного источника света. Разумеется, речь идет не об увеличении размеров источника в направлении, параллельном щелям: при использовании такого линейного источника вид интерференционной картины, как мы видели, не меняется. Речь идет и не об увеличении размеров вторичных когерентных источников, т. е. ширины щелей при использовании

точечного первичного источника света, — этот случай уже был рассмотрен в конце предыдущего параграфа. Сейчас нас будет интересовать вид интерференционной картины при использовании первичного источника конечной ширины, а сами щели будем для простоты считать бесконечно узкими. Мы увидим, что с увеличением ширины источника резкость интерференционных полос уменьшается вплоть до их полного исчезновения. Это накладывает определенные условия на размеры источников света в направлении, соединяющем отверстия или щели, при их использовании в интерференционных экспериментах по схеме Юнга.

Явление уменьшения резкости интерференционных полос, с которым приходится бороться в лабораторных экспериментах, нашло совершенно неожиданное и очень эффективное применение в астрономии.

Роль дифракции в телескопе. Одной из важнейших астрономических задач является определение углового расстояния двойных звезд, т. е. того угла, под которым видны эти звезды с Земли. Если звезды находятся на очень маленьком угловом расстоянии 9 друг от друга, то даже с помощью самых совершенных телескопов эту задачу решить не удается, так как в фокальной плоскости объектива изображения этих звезд размыты вследствие явления дифракции и не могут быть разрешены. Согласно представлениям геометрической оптики параллельный пучок лучей, падающих на линзу объектива, должен собираться в одной точке фокальной плоскости. Поэтому изображение удаленной звезды, лучи от которой попадают в объектив практически параллельным пучком, должно получаться в виде точки.

Выясним теперь, как на самом деле выглядит в фокальной плоскости объектива телескопа изображение звезды, которую из-за очень большого удаления можно считать точечным источником. Чтобы получить представление об этом, будем пока считать, что перед объективом телескопа помещена длинная щель шириной с параллельными прямыми краями. Поскольку приходящий от звезды свет можно рассматривать как плоскую волну, в фокальной плоскости объектива будет наблюдаться дифракционная картина от щели, которая была описана при рассмотрении дифракции в параллельных лучах. Распределение освещенности для этого случая было показано на рис. 209.

Освещенность экрана в первом боковом максимуме составляет, как было показано, менее освещенности в центре дифракционной картины. Это означает, что почти весь поток света, прошедший через щель, распространяется в интервале углов от — до где угол определяется формулой (7) § 31 при Поскольку мы рассматриваем щель, ширина которой много больше длины волны X, то можно заменить на и тогда

Изображение бесконечно удаленного точечного источника в фокальной плоскости линзы оказывается размытым в полоску, перпендикулярную краям щели. Длина а этой полоски ограничена размером центрального дифракционного максимума и поэтому равна

где — фокусное расстояние линзы.

Рассмотрение дифракции на круглом отверстии диаметром показывает, что изображение бесконечно удаленного источника размывается в круглое пятно, диаметр которого определяется той же формулой (2) с дополнительным числовым коэффициентом, близким к единице.

В телескопе роль круглого отверстия играет оправа объектива, и изображение звезды представляет собой создаваемую этой оправой дифракционную картину. Объективы большого диаметра могут давать изображение более высокого качества, так как (см. формулу уменьшается влияние дифракции.

Разрешение телескопа. Если в телескоп наблюдают две звезды, находящиеся на малом угловом расстоянии друг от друга, то дифракционные картины, создаваемые каждой звездой, налагаются одна на другую. Если при этом главные максимумы дифракционных картин сближаются на расстояние, меньшее радиуса центрального дифракционного пятна, то, согласно критерию Рэлея, измерить точно расстояние между ними, а тем самым и угловое расстояние между звездами, невозможно. Правда, современные методы обработки экспериментальных результатов позволяют разрешать дифракционные картины, для которых критерий Рэлея, строго говоря, не выполняется. Однако для оценки разрешающей способности телескопа это не принципиально.

Итак, минимальное угловое расстояние 9 между звездами, которое можно измерить с помощью телескопа, равно

По этой формуле легко оценить, что на телескопе-рефлекторе с диаметром зеркала в принципе можно измерять угловые размеры, не меньшие .

• Почему световые волны, испускаемые разными элементами поверхности протяженного источника, такого, как раскаленная нить лампочки, не создают интерференционной картины?

• Объясните, почему интерференционные полосы в опыте Юнга становятся менее отчетливыми по мере увеличения размеров первичного источника, освещающего щели.

• Какое применение в астроиомии нашло явление уменьшения резкости интерференционных полос при использовании первичного источника света конечных размеров?

• Какую роль играет дифракция света в формировании изображения в фокальной плоскости объектива телескопа? Какую форму имело бы изображение удаленной звезды, если бы она была, например, пятиконечной?

• Что происходит с наблюдаемым в телескопе изображением звезды при уменьшении диаметра отверстия объектива?

Звездный интерферометр. Для измерения еще меньших, угловых размеров используется звездный интерферометр Майкельсона, идею которого можно понять из рис. 216. Основными элементами интерферометра являются непрозрачный экран А с двумя отверстиями, расстояние между которыми можно изменять, собирающая линза расположенная непосредственно за экраном А, и экран В, находящийся в фокальной плоскости линзы, на котором наблюдаются интерференционные полосы.

Рис. 216. К объяснению принципа действия звездного интерферометра

Это есть одна из возможных реализаций опыта Юнга, отличающаяся от рассмотренной ранее тем, что интерференционные полосы наблюдаются не на удаленном экране, а в фокальной плоскости линзы, роль которой в звездном интерферометре выполняет объектив телескопа-рефлектора. При изменении расстояния между отверстиями резкость интерференционных полос изменяется, и по этим изменениям можно определить угловой размер двойной звезды 9.

Чтобы понять, почему меняется резкость полос, рассмотрим сначала интерференционную картину, создаваемую одним бесконечно удаленным точечным источником Если источник расположен на оптической оси (рис. 216а), то фазы вторичных источников совпадают и в некоторой точке Р на экране В будет находиться светлая или темная полоса в зависимости от того, будет ли разность хода лучей I равна четному или нечетному числу полуволн. Если источник смещен с оптической оси прибора на угол то создаваемая им интерференционная картина окажется сдвинутой, поскольку между вторичными источниками имеется разность фаз, обусловленная разностью хода лучей от

Читайте также:  Как заменить лампочку ближнего света у матиза

источника до отверстий в экране А (рис. 2166):

При наблюдении двойной звезды, которую можно рассматривать как два взаимно некогерентных точечных источника, на экране В будут налагаться одна на другую две независимые интерференционные картины, создаваемые каждой звездой, и освещенность в любой точке экрана будет равна сумме освещенностей от каждой интерференционной картины.

Как будет выглядеть эта суммарная интерференционная картина? Она будет отчетливой, если светлые полосы одной картины приходятся на светлые полосы другой, и исчезнет совсем, если светлые полосы одной совпадут с темными полосами другой. Полное исчезновение полос произойдет, конечно, только тогда, когда звезды имеют одинаковую яркость.

Теперь легко понять, почему меняется резкость полос при изменении расстояния между отверстиями на экране А. Если отверстия расположены очень близко друг к другу, то, как видно из формулы (4), фазы вторичных источников будут практически совпадать друг с другом как для одной, так и для другой звезды. Интерференционная картина будет отчетливой.

Если увеличить расстояние между отверстиями, то интерференционные картины от разных звезд будут смещаться относительно друг друга, и при некотором расстоянии светлые полосы одной картины совпадут с темными полосами другой — интерференционная картина исчезнет. Пусть в некоторой точке Р (рис. 216а) находится светлая полоса одной интерференционной картины и темная — другой. Это означает, что световые колебания от одной звезды приходят в точку Р в фазе, от другой — в противофазе. Поскольку разность хода лучей от вторичных источников до точки Р одинакова для обеих интерференционных картин, нетрудно сообразить, что наложение светлой полосы на темную имеет место при выполнении условия

где — любое целое число. С помощью формулы (4) условие полного исчезновения интерференционной картины (5) можно записать в виде

Итак, при увеличении расстояния между отверстиями первое исчезновение интерференционной картины происходит при

При дальнейшем увеличении интерференционные полосы появляются снова, затем снова исчезают и т. д.

Измерив расстояние между отверстиями интерферометра при котором впервые исчезает интерференционная картина, мы получаем возможность с помощью формулы (6) вычислить угловой размер двойной звезды. Как видно из этой формулы, чувствительность прибора тем больше, чем больше может быть сделано расстояние между щелями на объективе.

Оценим, какой минимальный угловой размер двойной звезды можно измерить с помощью интерферометра на базе шестиметрового телескопа: при он равен

Рис. 217. Схема звездного интерферометра Майкельсона

Небольшим изменением рассмотренной выше конструкции звездного интерферометра Майкельсон сумел добиться высокого углового разрешения даже с помощью телескопа со сравнительно небольшим диаметром объектива. Он предложил свет от двойной звезды направлять через щели в объектив не непосредственно, как на рис. 216а, а после отражения от системы зеркал, действие которых понятно из рис. 217. Расположенные против щелей зеркала и закреплены неподвижно, а зеркала можно симметрично раздвигать. При этом сдвиг интерференционной картины от одной звезды относительно картины от другой и, следовательно, разрешающая способность прибора определяется расстоянием между зеркалами хотя расстояние между интерференционными полосами зависит от расстояния между щелями и не меняется.

Рассмотрим теперь, какой вид будет иметь интерференционная картина, если вместо двух некогерентных точечных источников света имеется один протяженный источник с угловым размером 9. В этом случае каждый точечный элемент, на которые можно разбить протяженный источник, создает свою интерференционную картину. Так как все эти источники некогерентны, то их интерференционные картины просто налагаются друг на друга.

Выясним, как меняется резкость суммарной картины от протяженного источника в виде светящейся полоски при постепенном увеличении расстояния между щелями интерферометра. Если это расстояние очень мало, то положения полос интерференционных картин от всех точечных элементов светящейся полоски практически совпадают и суммарная картина имеет максимальную

резкость. По мере увеличения расстояния резкость картины уменьшается, и при некотором значении полосы пропадают.

Найти можно следующим образом. Мысленно разобьем равномерно светящуюся полоску на пары одинаковых элементов так, чтобы расстояние между элементами любой пары равнялось половине длины полоски. Угловое расстояние между элементами каждой пары, очевидно, равно 9/2. Если положение светлых полос интерференционной картины одного элемента пары совпадает с положением темных полос картины, создаваемой вторым элементом этой пары, то экран оказывается равномерно освещенным, так как условия совпадения одинаковы для всех пар элементов.

Из этих рассуждений следует, что условие исчезновения интерференционных полос от протяженного источника с угловым размером 9 дается той же формулой (6), что и от двух точечных источников, только в ней следует заменить 9 на 9/2:

В случае источника в виде равномерно светящегося диска условие исчезновения интерференционной картины будет отличаться от (7) лишь числовым множителем, близким к единице.

Звездный интерферометр Майкельсона позволяет определять не только угловое расстояние между компонентами двойных звезд, но и угловые диаметры не слишком удаленных одиночных звезд. Первой звездой, у которой Майкельсону удалось измерить угловой диаметр, была Бетельгейзе, относящаяся к так называемым красным гигантам. Он оказался равным Зная расстояние до Бетельгейзе, измеренное по параллаксу, можно было вычислить линейный диаметр звезды, оказавшийся равным примерно км, что превышает диаметр земной орбиты (3-108 км).

Формула (7) определяет допустимые размеры источника при проведении интерференционных опытов по схеме Юнга: угловой размер источника , видимый от щелей в экране, не должен превышать отношения длины волны X к расстоянию между щелями

• Объясните принцип действия звездного интерферометра Майкельсона. Как по наблюдаемой картине отличить двойную звезду от одиночной?

• Почему при увеличении расстояния между зеркалами звездного интерферометра интерференционные полосы от двойной звезды практически исчезают и появляются снова?

• Чем объясняется исчезновение интерференционных полос в звездном интерферометре при увеличении расстояния между зеркалами, если наблюдается одиночная, но очень большая звезда? Как из этих наблюдений можно оценить ее угловой размер?

• При какой максимальной ширине источника света в виде узкой полоски можно наблюдать интерференционные полосы в опыте Юнга, если расстояние между щелями мм, расстояние от источника до щелей а длина волны

Источник